RSA Implementation Documentation

Samuel Grant Dawson Williams

August 19,2010

Contents
1 Introduction
2 Compile and Run

3 Implementation

3.1 Basic Mathematics
3.2 Barrett Modular Reduction
3.3 Modular Exponentiation L. e e e
34 Probabilistic Prime Generation L Lo
3.5 Multiple Precision Mathematics oL oL
3.6 Message Packing

36.1 Caleulating s

3.6.2 Padding and Cryptographic Integrity
3.7 Key Generation, Encryption and Decryption
3.8 Secure Authentication L. e

4 Performance

41 KeyGeneration e e e e
41.1 Packingand Unpacking
4.12 Barrett Modular Reduction oL oo
4.13 Convergence Instability oo
42 Encryption and Decryption L. e
43 Division by Repeated Doubling

5 Conclusion

18
18
18
18
19
19
20

20

1 Introduction

This documentation outlines the main functions and structure of the given RSA implementation. Several
algorithms were devised by my own idea such as division by repeated doubling. The implementation’s
performance is then tested and discussed.

2 Compile and Run

To compile and run, use the following commands. Basic generation algorithm reads text from file text.txt.
Press any key when program says ‘Waiting...”:

$ gt++ -0 multiple multiple.cpp -03
$./multiple
Generating key A

p = 0x3928CE8A98673B3F1C782A4620EC570B651FA885FBA61535

q = 0x9D2A06A4288E244213494A6B588F3DE648E34DCCB1FB16B9

n = 0x231768D87E3DFDA230E599007A6FAED1D1A477246FC4653A \
AODDOB5EE66724394EA8CDEF46BCOBCADD70B42F90CEE14D

0x43827EB99DF7B861C132A8B122D4DA7288827AA9ASEAEAA3

d = 0x04A86B7DDC1ABICB75135C5DC555847DCEOD1727557739F7 \
D89F84C6DA91C5AB603D92637D2EFDA81D68BSAOF3424ECB

Generating key B

o -
]

p = OxC6E6FDD882B65BA6C18DC6884CB3AD10CD88C3F92513848F

q = O0x6D19AEFBE16704A9325C01A5FC13B3F899195D1F50100ED3

n = 0x54C44E98ADF1849F8D5DE63384019EFF257BA00755901953 \

09D06AB18E7DF25DDE4DEB6AES4A142DFB159156994613DD

e = 0x53546D1448661B0133B59A61241B7451AD76D628708F2715

0x33CFOAE12EAF73DFB927B7497B561655C1FD75F19B4F9E42 \
A3513755CE6FD2BAF27974ED40A588674465ED1E755E1535

Time for key generation: 1.95216s

Waiting...

Q.
I

Packing from 12 to 11
Encrypted Text: {
0x2C5B71D62E9D26F30423F3BDEC77DA0028FEOEDSBD6328FA \
BBDAE97C214491C77BOF474324AFEC5A7A0029472ECA229C,
0x35E3028BF1C335D4A8C250648D26D52A361020CA6B317F59 \
9E096934C8E9849229E3A4277F289D320F385F8E3C4D99FO0,
0x28E2ED31931252881BC504E65F920F1F9BOC33CCFBAEED7B \
1759826657D11E7BD819E22D9CAEB302C693F19237911EBS

b
Time for encryption: 0.0666592s
Waiting. ..

Packing from 11 to 12
Decrypted Text: The quick brown fox jumped over the lazy dog.
Time for decryption: 0.078691s
Total time: 2.09751
Pack/Unpack time: 0.000105619s
Processed: 1238.39 bytes per second

3 Implementation

3.1 Basic Mathematics

Random numbers are generating using cryptographically secure /dev/random. Length is specified in
multiple of 32-bit words.

Listing 1: Random Number Generation

// Returns a large random number. Digits is in multiple of 32 bits.
void Integer :: generateRandomNumber (Integer::DigitT length) {
static std::ifstream * randomDevice = NULL;

if (!randomDevice) {
randomDevice = new std ::ifstream (”/dev/urandom”, std::ios::binary);

i

m_value .resize (length);
randomDevice —read ((char*)&m_value [0] , (std::size_t)m_value.size () * sizeof(DigitT

N

Greatest common divisor is calculated using non-recursive function. This function requires one division
per iteration.

Listing 2: Greatest Common Divisor

// Returns the greatest common divisor of a and b.
void Integer::calculateGreatestCommonDivisor (Integer a, Integer b) {
while (b != 0) {
Integer tmp = a;
tmp . modulus (b);

a=b;
b = tmp;

(*this) = a;

Powers are calculated using repeated squaring. This operation is inefficient for large numbers. Perfor-
mance is O(k) for k bit exponent. Each iteration performs at most two multiplications.

Listing 3: Calculate Power

void Integer::setPower (Integer base, Integer exponent) {
(*this) = 1;

while (exponent != 0) {
if (exponent.m_value[0] & 1) {
this —>multiply (base); // % m
}

exponent.shiftRight (1);
base . multiply (base); // % m

3.2 Barrett Modular Reduction

Barrett modular reduction is used to optimise in the case we are calculating » mod m. It works by re-
moving the need to use division to calculate modulus, which in many cases means that division can be
removed completely from the inner loop of an algorithm. It is very versatile and can be used in several

places where n mod m is calculated with constant m several times.

Listing 4: Barrett Reduction

BarrettReduction :: BarrettReduction (const Integer & _mod) {
mod = _mod;

mod.normalize ();

// Remainder — temporary .
Integer r;

// Radix — the number of possible values per digit

b = (Integer::IntermediateT)l << Integer :: DIGIT_BITS;
bk .setPower (b, mod.size () * 2);

mu.setFraction(bk, mod, r);

// Division by 0x100 is the same as shiftRight(2)
bn = Integer :: DIGIT_BITS * (mod.size () — 1);
bp Integer :: DIGIT_BITS * (mod.size() + 1);

/! Mask for base—2 modulus
bkp.setPower (b, mod.size () +
bkm = bkp;

bkm.subtract (1);

1);

}

void BarrettReduction :: modulus
Integer ql, q2, q3, rl, r2;

(Integer & x) const {
ql = x;

ql.shiftRight(bn);

setProduct(ql, mu);

q2.

q3 = q2;
.shiftRight(bp);

rl = x;
rl .binaryAnd (bkm);

r2 .setProduct(q3, mod);
r2 .binaryAnd (bkm);

if (r2 > rl1) {
rl.add(bkp);

rl.subtract(r2);

while (rl >= mod) {
rl .subtract(mod);

}

X =r1l;
x.normalize ();

3.3 Modular Exponentiation

Barrett modular reduction can improve performance of z¥ mod m, because we change division to multi-
plication in the inner loop.

Listing 5: Calculate Power using Barrett Modular Reduction

void Integer::setPower (Integer base, Integer exponent, const BarrettReduction & r) {
(*this) = 1;

while (exponent != 0) {
if (exponent.m_value[0] & 1) {
this —>multiply (base);
r.modulus (* this);

}

exponent.shiftRight (1);
base . multiply (base);
r.modulus(base);

Jacobi test is calculated using non-recursive function. This function will tell us if b is composite or not.
We perform one division per loop.

Listing 6: Jacobi Test
int jacobi (Integer m, Integer n) {
int i = 1;
Integer t;

while (m > 1) {
Integer j = 0;

while ((m[0] & 1) == 0) {
j.add(1);
m.shiftRight (1);

}

if ((jIO] & 1) == 1) {
t =n[0] & 7;

if ((t == 3) 1l (t == 5))

i=—i;

¥

if ((m[0] & 3) == 3 && (n[0] & 3) == 3) {
i =—i;

}

t = n;

-

.modulus (m);

n = m;
m = t;
return i;

3.4 Probabilistic Prime Generation

To test prime number p first we generate a random number «a in the range (2, p). We check that it is co-
prime to b using GC'D test. If the number is co-prime, we use Jacobi function and test equivalency with
Legendre function. We repeat this test several times to increase probability of accurate result.

Listing 7: Probabilistic Prime Test

bool Integer::isProbablyPrime (int tests) const {
const Integer & p = *this;

if (p==2){
return true;
¥

// Cache the reduction for better setPower.
BarrettReduction br (p);

while (tests— > 0) {
Integer a = 0;
a.generateRandomNumber (2, p);

Integer gcd = 0;
ged . calculateGreatestCommonDivisor(a, p);

if (ged == 1) {
Integer 1 = 0, e = 0, pl = p;
pl.subtract (1);
e = pl;
e.shiftRight (1);

1.setPower(a, e, br);

int j = jacobi(a, p);

if (((j == —1) & (1 == pl)) Il ((j == 1) && (1 == 1))) {
// So far so good ...
} else {

// p is composite
return false;

}
} else {

// p is composite
return false;

i

return true;

To generate a prime, we use random number generation to select numbers. We ensure that we are only
checking odd numbers, and then use probabilistic method to determine if the number is likely to be prime.
We also employ a small check to ensure we avoid Mersenne primes.

Listing 8: Prime Number Generation

void Integer:: generatePrime (DigitT length) {
while (true) {
std ::cout << << std:: flush;
this —generateRandomNumber(length);
this —>m_value[0] I= 1; // Ensure odd number

» 9

if (isProbablyPrime ()) {
std ::cout << std::endl;
return ;

3.5 Multiple Precision Mathematics

All operations function using 32-bit word as the default storage. This implies that we are using base 232
number system. Operation has no maximum size, but performance will decrease as number of words used
to represent number increases.

Addition is calculated by using double-word size arithmetic (¢r) = a + b where ¢ is carry and r is the
result for this word. Performance is O(maz(k, 7)) for adding k digits and j digits numbers together.

Listing 9: Multiple Precision Addition

void Integer::add(const Integer & a) {
if (m_value.size () < a.m_value.size ()) {
m_value .resize (a.m_value.size ());

}
IntermediateT carry = 0;
std ::size_t i = 0;
for (; i < a.m_value.size(); i += 1) {
IntermediateT result = (IntermediateT)m_value[i] +

(IntermediateT)a.m_value[i] + carry;

m_value[i] = (DigitT)result;

carry = result >> DIGIT_BITS;

}

for (;carry != 0 && i < m_value.size (); i += 1) {
IntermediateT result = (IntermediateT)m_value[i] + carry;
m_value[i] = (DigitT)result;
carry = result >> DIGIT_BITS;

}

if (carry != 0) {
m_value . push_back (carry);

}

Subtraction is calculated word by word using double-word size to accumulate the total amount to be
subtracted. We compare this with the amount we have, and if it is less, we can subtract. If it is not enough,
we need to borrow from the right hand side. Upper bound for performance is O(k) for subtracting j digits
from £ digits numbers together, where k& > j.

Listing 10: Multiple Precision Subtraction

void Integer::subtract(const Integer & _a) {
Integer a = _a; a.normalize ();

std::size_t width = a.m_value.size ();
IntermediateT take = 0;

for (std::size_t i = 0; i < width; i += 1) {
IntermediateT remove = take;

if (i < a.m_value.size ())
remove += (IntermediateT)a.m_value[i];

if (m_value[i] >= remove) {

m_value[i] —= remove;
take = 0;
} else {

width = std ::max(width, i+2);
m_value[i] = ((IntermediateT)m_value[i] + B) — remove;

// Take 1 from the next digit
take = 1;

Multiplication is calculated by using double-word size arithmetic (¢r) = a * b where ¢ is carry and r is
the result for this word. We keep track of current result, and accumulate the inner product and carry at
each step for each digit. Performance is O(kj) where we are multiplying two numbers of k and j digits.

Listing 11: Multiple Precision Multiplication

void Integer::setProduct(const Integer & x, const Integer & y) {
assert(x.size() != 0 && y.size() != 0);

std::size_t n = x.size() — 1, t = y.size() — 1;

for (std::size_t = 0; i < m_value.size (); i++)

i
m_value[i] = 0;
m_value .resize (x.size () + y.size() + 2);

for (std::size_t i = 0; i <= t; i += 1) {
IntermediateT carry = 0;

for (std::size_t j = 0; j <= n; j++) {
IntermediateT product = (IntermediateT)x[j] * (IntermediateT)y[i];
IntermediateT result = (IntermediateT)m_value[i+j] + product + carry;

m_value[i+j] = (DigitT)result;
carry = result >> DIGIT_BITS;
}

m_value[i+n+1] = carry;

¥

this —normalize ();

Division is calculated by using double-word and quad-word size arithmetic (implemented using another
multiple precision integer). We perform some basic checks such as whether division will yield a non-zero
quotient, and then we normalise the number.

Listing 12: Multiple Precision Normalisation for Division

void Integer::setFraction(const Integer & numerator ,
const Integer & denominator ,
Integer & remainder)

if (numerator < denominator) {
(*this) = 0;
remainder = numerator;
return;

¥

Integer X = numerator;
Integer y = denominator;
x.normalize ();
y.normalize ();

// Normalize?
std::size_t shift = 0;

DigitT back = y.m_value.back ();
while (back < (B/2)) {

back = back << 1;

shift += 1;

assert(back != 0);
}
if (shift) {
x.shiftLeft(shift);
y.shiftLeft(shift);
}

setFraction(x, y);

if (shift) {
x.shiftRight(shift);

}

remainder = x;

10

Division itself is performed by lo
the quotient. We refine this guess

oking at the first two digits in the denominator and estimating the digit for
using three digits from the denominator. We then subtract the quotient x

denominator, and continue to calculating next value for the quotient. Upper bound on performance is

O(kj) where we are dividing a

number of £ digits by j digits. However actual performance is better,

specifically we can say that there will be at most k — j single-precision divisions when normalisation is

used.

Listing 13: Multiple Precision Division

void Integer::
const std::size_t n

if (n < t) return; /

const std::size_t nt

Integer & q *this ;
q.m_value.clear ();

Integer bb, bp, tmpl
bb.setProduct(B, B);
bp.setPower (B, nt);

if (ylt] < (B/2)) {
std ::
}

tmpl .setProduct(y, b
while (x >= tmpl) {
q[nt] += 1;

Xx.subtract (tmpl)

}

for (std::size_t i =
if (x[i] ylt]
q[i—t—1] = B

} else {

if (i >0)¢t
qli—t—1] = t
}

!/l If we had 128
Integer u;

u.setProduct(y[t
if (t > 0) u.add

Integer v;

v.setProduct(x[1i
if (i > 0) { tmp
if (i > 1) v.add

while (true) {
tmpl.setProd
if (tmpl > v
qli—t—1]
} else {
break ;
}
}

tmpl .setPower (B,
tmp2 .setProduct(
tmpl.setProduct(

if (tmpl > x) {
x.add (tmp2);

qli—t—1] —=
} else {

}

setFraction (Integer & x,

q.m_value.resize (nt+1);

cerr << ”Thar beythe dragons!” << std::endl;

IntermediateT tl

x.subtract (tmpl);

Xx.subtract (tmpl);

Integer y) {
t y.size() — 1;

x.size() — 1, =

/ numerator is smaller than denominator , done.

n

t]

, tmp2;
// Base (radix)

P

n; i i——) {

{

>t

)
1;

= (IntermediateT)x[i] * B;
1 += x[i—1];
1 / (IntermediateT)y[t];

bit arithmetic , we could do this on the CPU.
1, B);

(ylt—=1D;

1, bb);
I.setProduct(x[i—1], B); v.add(tmpl);
(x[1=21);

i

uct(q[i—t—1], u);
) {

i—t—1);
y, tmpl);
qli—t—1], tmp2);

1

11

Division can also be calculated by using repeated doubling. Performance of this algorithm might be
as good as O(kjlogj). However, in practice while there it has slightly different characteristics than
the traditional algorithm given previously. Firstly, if the numerator and denominator are far apart, the
staircase upwards can be very high. This is O(logj), then we must descend, however this operation
is probably O(j), because during descent we sometimes ascend again. If descent can be improved to
O(log j), performance of the algorithm may become O(k log j).

Listing 14: Multiple Precision Division

bool Integer::setFractionSlow (const Integer & numerator ,
const Integer & denominator ,
Integer & remainder)

if (numerator == 0) {
remainder = 0;
(*this) = 0;

return true; // no remainder

}

if (denominator == 0) {
throw std::runtime_error(”Division,by,0!”);

}

(*this) = 0; // Number of divisions possible .
Integer accumulator = 0; // Total value of doublings .

/!l This pair must typically be shifted together .
Integer count = 1;
Integer product = denominator;

while (true) {
//std ::cout << count << std ::endl;

Integer tmp = product;
tmp .add (accumulator);

int s = tmp.compareWith(numerator);

if (s == 0) {
/! We have found a division with no remainder
this —>add (count);
// accumulator .add(product);
remainder = 0;

return true;
} else if (s == 1) {
/! We have found a division with a remainder
count.shiftRight (1);
product.shiftRight(1);

if (count == 0) {
// We have found a divisor with a remainder
remainder = numerator;
remainder.subtract (accumulator);

return false;

}

continue ;

i

this —add (count);
accumulator .add (product);

count.shiftLeft (1);
product.shiftLeft (1);

12

Other operations such as shifts, equality, comparison and logical operators are trivial, and can be reviewed
in the source code Integer.cpp. Performance of these basic operations is generally linear based on size of
input. Also base-16 input and output were implemented for debugging purposes.

3.6 Message Packing

We pack message according to size of s determined by key’s n size.

Listing 15: Message Pack

TextT pack(StringT input, std::size_t s)

const std::size_t PACK BLOCKS = s;
const std::size_t PACK BYTES = sizeof(Integer::DigitT) * PACK_BLOCKS;

TextT output;
input.resize (((input.size () + PACK_BYTES — 1) / PACK BYTES) * PACK_BYTES);

for (std::size_t i = 0; i < input.size(); i += PACK_BYTES) {
Integer j((Integer::DigitT*)&input[i], PACK_BLOCKS);

output.push_back(j);
¥

return output;

32-bit word

mio] mii]
plO] pl4] [pis) pl12] [pit6] |
T el awlileik blrielwinl flolx]

m[1] m(2] m[3]
[pl20] pl24] [pi28] [pl32] pI36] |
G emieiela] Tavielr] tinlel talzly,
mi3]

Figure 1: An example of packing plaintext p into message m with size 3.

13

A function is also provided to unpack the message data into a byte string. It works almost exactly the
same way, but in reverse.

Listing 16: Message Pack

StringT unpack(const TextT & input, std::size_t s)
{
const std::size_t PACK BLOCKS = s;
const std::size_t PACK BYTES = sizeof(Integer::DigitT) * PACK_BLOCKS;
StringT output;
output.resize (input.size () * sizeof(Integer::DigitT) * PACK_BLOCKS);
for (std::size_t i = 0; i < output.size(); i += PACK BYTES) {
input[i / PACK_BYTES].unpack ((Integer:: DigitT*)&output[i], PACK_BLOCKS);
¥
return output;
¥

A function is used to convert data from one packing size to another. It simply unpacks the data from the
original size and packs it again into the new size.

Listing 17: Message Pack

TextT repack(const TextT & input, std::size_t sl, std::size_t s2)
{

StringT buffer = unpack(input, sl);

return pack(buffer, s2);
}

3.6.1 Calculating s

The argument s is calculated according to the maximum size of the data during pack and unpack.

For packing, s indicates that the data is segmented into blocks of s x 4 bytes (see figure 1). The size of
m must be one word size less than the modulus, or we risk the possibility that m >= n.

For unpacking, we need to specify s such that s is bigger than the maximum size of the integer in 32-bit
words (see figure 2). In the case of repacking encrypted data, the maximum size is the same as the size of
the encryption keys n, since the result of m” mod n is always smaller than n.

E n[2] n[1] n[0]
m(o]

Figure 2: We choose n for packing by looking at the size of n in m? mod n

3.6.2 Padding and Cryptographic Integrity
Block padding can have serious implications to the cryptographic integrity of message transmission. If

padding at the end of a message is predictable, it may be easier to extract details about the encryption and
decryption key. The above padding scheme does not take this into account.

14

3.7 Key Generation, Encryption and Decryption

To calculate decryption key, we need a function to compute inverse in Z . This function uses an iterative
algorithm as recommended by Knuth. Some adaptation from the original algorithm have been performed
reduce the amount of work being performed.

Listing 18: Z; Inverse Computation

/! Computes inv = u’r(—1) mod v */

/! Reference: Knuth Algorithm X Vol 2 p 342

void Integer::calculatelnverse (Integer u, Integer v) {
Integer ul = 1, u3 =u, vl =0, v3 = v;
bool odd = false;

Integer q, t3, w, tl;
while (v3 != 0) {
q.setFraction(u3, v3, t3);

w.setProduct(q, vl);

tl = ul;
tl .add(w);

ul
vl
u3
v3

vl
tl;
v3;
t3;

odd = !odd;
}

if (odd) {

(*this) = v;

this —>subtract(ul);
} else {

(*this) = ul;

Key generation is done by generating prime numbers. We define bits to be the key size in bits, which is
multiple of 32.

Listing 19: Calculate p and ¢

// Find two large primes using probabilistic method.
p.generatePrime (bits / Integer ::DIGIT_BITS);

do {
q.generatePrime (bits / Integer :: DIGIT_BITS);
} while (q == p);

15

We then generate encryption key and decryption key.

Listing 20: Calculate e and d

Integer n;
n.setProduct(p, q);
Integer e = 0;

/! Generate public key
e.generatePrime (bits / Integer :: DIGIT_BITS);

Integer pl = p, ql = q;
pl.subtract(1);
ql.subtract (1);

// Generate private key
std:: cerr << ”"Generating,d ...
Integer phi = 0;
phi.setProduct(pl, ql);
Integer d = 0;
d.calculatelnverse (e, phi);

s

<< std ::endl;

Once we have keys, actual encryption and decryption is easy, provided by a single funtion transformMes-
sage. This also utilises Barrett modular reduction to enhance speed.

Listing 21: Transform Message

typedef std::vector<Integer> TextT;
TextT transformMessage (Integer e, Integer n, TextT message) {
TextT result;

BarrettReduction br(n);
Integer c;

for (TextT::iterator i = message.begin(); i != message.end(); i++) {
c = *i;

c.setPower(*i, e, br);

result.push_back(c);
}

return result;

16

3.8 Secure Authentication

Secure authentication is performed by calculating E,, (Dy,(Ey(D,(M)))) = M. Both Alice and Bob have
generated RSA keys.

Listing 22: Authentication Method

void testEncryption (StringT input, std::size_t bits) {
/] Alice’s public and private key
RSAKeys keysA = generateKeyPair(bits);

// Bob’s public and private key
RSAKeys keysB = generateKeyPair(bits);

/] Alice will transmit input to Bob, securely
TextT cipherText = pack(input, keysA.n.size() — 1);

// Alice knows Bob’s public key pair, and her own keys.

/! Firstly , Alice encrypts the text using her private key.
cipherText = transformMessage (keysA.d, keysA.n, cipherText);
cipherText = repack(cipherText, keysA.n.size (), keysB.n.size() — 1);
// She then encrypts the data with Bob’s public key.

cipherText = transformMessage (keysB.e, keysB.n, cipherText);

// Transmit from Alice to Bob
TextT decipherText = cipherText;

/! Bob knows Alice’s public key pair, and his keys.

/! Next, Bob decrypts the message using his private key.

decipherText = transformMessage (keysB.d, keysB.n, decipherText);
decipherText = repack(decipherText , keysB.n.size () — 1, keysA.n.size ());
// Finally , Bob decrypts the message using Alice’s public key.
decipherText = transformMessage (keysA.e, keysA.n, decipherText);

// Original message is recovered .
StringT output = unpack(decipherText, keysA.n.size ());

Firstly we pack plaintext into cipher text using s dictated by Alice’s key. We then transform the cipher
text C1 = D,(M). We then repack the cipher text using s dictated by Bob’s key. We then perform
Cy = Ey(C4). Afterwards, we have cipher text which can transfer across the network securely.

Bob receives the message and decrypts it using his private key C5 = D, (C=). Finally, he repacks appro-
priately for Alice’s key, and retrieves the message by calculating M = E,(C3).

17

4 Performance

4.1 Key Generation

Performance is acceptable even for key generation and encryption up to 1024 bits. After this point, ex-
ponential curve begins to cause a large increase in run time. Barrett modular reduction is critical for
generating larger keys, as without it the time required increases much more rapidly.

Key generation tests were repeated 30 times for k-bit keys where k is a multiple of 128 up to 2048. The
tests were performed on a duel core CPU running on 2.5Ghz, but only a single core was used for execution.
The main calculations are 3 k-bit prime numbers, p, ¢ and e, and the inverse of e as d.

] k-Bits \ With Barrett Reduction | Without Barrett Reduction

128 0.35s 1.1s
256 1.3s 7.3s
384 29s 22s
512 53s 47s
640 8.1s 120s
768 12s 220s
896 22s 360s
1024 32s 540s
1,152 45s 900s
1,280 61s - Give up -
1,408 76s
1,536 100s
1,664 130s
1,792 150s
1,920 230s
2,048 260s

Table 1: Key Generation Time (2 s.f.)

If we graph this data (see figure 3), we can see that the execution time rapidly increases past 1280 bit keys.
In order to generate keys in a reasonable amount of time, we need further theoretical improvements to the

algorithms.

4.1.1 Packing and Unpacking

Profiling revealed that pack, unpack and repack operations contribute less than 1.0% to total runtime.

4.1.2 Barrett Modular Reduction

Barrett modular reduction is used in the exponentiation function to reduce the amount of work done.
Normal modulus function is performed using division. Barrett modular reduction allows us to perform a
single division and use this to perform modulus function without division, thus improving performance

significantly.

18

Time (Seconds)
3
8

150 Without Barrett Modular Reduction

With Barrett Modular Reduction

Convergence Instability

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

k-Bits

Figure 3: A graph of key generation performance, clearly showing exponential time complexity.

4.1.3 Convergence Instability

One observation made when testing the key generation performance was that as the key size increases not
only does the time required increase, but also variance in the time required. While small keys quickly con-
verged on an accurate measurement, large keys produced a wide variance in timing information.

As aresult, the larger keys required repeated testing to get a useful result. In the future, it may prove useful
to write an adaptive benchmark which continues to test key generation until the deviation in the average
time taken is less than a specified tolerance; however this type of testing may require exponentially more
tests for a reasonably accurate convergence for a problem such as key generation, making its use very
costly.

4.2 Encryption and Decryption

Encryption and decryption is acceptable for small amounts of data and small key sizes. The actual per-
formance is dictated by key size and packing method. If the key is bigger, n is bigger, and we can pack
more data into each message. However, numerical operations which have non-linear performance become
increasingly expensive with larger keys.

| k-Bits | Bytes per Second

128 24KB/s
256 17KB/s
512 7.7KB/s
1024 2.5KB/s

Table 2: Speed of encryption and decryption.

Profiling the code revealed that the biggest improvement which could be made for large exponents is to
improve the exponentiation function. As well as Barrett modular reduction, several options exist to im-
prove algorithmic performance. Prior research suggests that using sliding window exponentiation could
reduce the cost of exponentiation by reducing the number of steps required by caching low order expo-
nents.

19

4.3 Division by Repeated Doubling

As an additional experiment, division was implemented by two different algorithms. Traditional method
using fixed-precision division, and division by repeated doubling.

Division by repeated doubling is faster than traditional division algorithm, but only when the numerator
and denominator are similar in magnitude. This is because in a few steps we can double the number
and exceed the numerator. In the case where the numbers are further apart, the number of steps required
increases more than the traditional implementation of division.

5 Conclusion

I have presented a moderately efficient implementation of RSA. However, there are many places where the
algorithm can be improved. According to my testing, the next step is to improve speed of multiplication
and also reduce the number of times it is performed during exponentiation. There are several ways to do
this, such as Karatsuba multiplication and improved carry handling to improve algorithmic performance.
Another option would be to use sliding window exponentiation which decreases the number of multi-
plications. It would also be possible to utilise more advanced vector operations and assembly language
implementations of various operations to enhance execution speed.

As well as these major areas of performance enhancement, there are many minor areas that could be
refined, however these have not been done due to time limitations and the fact that they are relatively
minor part of the total run time of the program.

20

