
Mr Painting Robot
Samuel Grant Dawson Williams

Computer Science and Software Engineering
University of Canterbury
Christchurch, New Zealand

Email: samuel@oriontransfer.org

Richard Green
Computer Science and Software Engineering

University of Canterbury
Christchurch, New Zealand

Email: richard.green@canterbury.ac.nz

Abstract—This paper discusses the identification of
outlines, and how these can be used for input into a cre-
ative painting algorithm. It builds on several existing
algorithms including the bilateral filter and laplacian
edge detection, and develops several new algorithms
including intensity scanning and brush stroke forma-
tion. The benefit of this approach is that the output
format is vector based (and thus suitable for robotic
reproduction), rather than pixel based as in the major-
ity of prior research on painterly rendering. Synthetic
tests show that the entire process can reproduce sumi-e
style images with over 90% accuracy.

I. Introduction
Extracting significant details from images is an impor-

tant field of computer vision. The human vision system
is very good at this, but computers don’t have the body
of knowledge required for complex separation and clas-
sification of visual features. “Mr Painting Robot” is an
idea that a robot can be created to interpret and paint a
scene creatively, including four primary elements: colours,
outlines, shapes and textures.
A painting robot would ideally be a robotic arm with

both a camera and a paint brush attached. The arm
would use the camera to look around its environment and
choose something to paint. The painting materials would
be manually supplied to the robot in pots which would
then be applied to a canvas using a brush.
The successful implementation of a painting robot will

depend primarily on robust brush stroke formation. This
research will focus on the computer vision challenge of
extracting significant edges and mapping these to brush
strokes artistically.

II. Background
Painting is a fundamental form of expression which

encompasses many discrete actions. Painting a picture is a
process (to some degree) of rationalising the human visual
system into philosophical decisions and physical motions.
As artists, we interpret what we see, and create something
new using our experiences and aspirations.
The difficulty of establishing an empirical model for this

process lies with the ambiguity of the task. A wide range
of techniques have been explored, including water-colour
rendition [1], simulated brush strokes [2], [3], [4], pen and
ink rendering [5], [6]; there is no right or wrong way to

Fig. 1. The sample image.

paint a picture [7] - it is a highly subjective act where the
results may delight some and frustrate others. The choice
of colour, or the direction of brush strokes may be the
difference between perceived success or failure.

In this research, we will be considering only a single tool
- a paint brush. This means that given any input image,
the output must be a set of strokes, each stroke being
made up of a sequence of connected points with associ-
ated thickness and colour. While the discussed techniques
relate to painterly rendering in general, we are not overly
concerned with producing an image-based result typical of
other research in this area.

A. Detecting Edges
There are many methods to extract shapes and lines

from an image. In order to discuss several existing ap-
proaches, a sample image (see figure 1) will be used. There
are several elements of this image which make it notable:
significant textured and non-textured areas, same colour
surfaces which change based on lighting conditions and
surfaces with the same intensity value but differing colour.

The Canny algorithm [8] presents a robust method to
detecting edges in an image. This can be useful when we
are interested in the shape of an object, but information
such as line thickness and intensity is lost (see figure 2a).

The Hough transform [9] can identify known features
in an image. It can be used to detect straight lines, even
when they lack continuity. However, it does not help us
in the situation where we want to detect lines of unknown
curvature, and thus not so suitable for extracting brush
strokes.



(a) Canny edge detection (b) Grey-scale Laplacian edge detec-
tion

(c) 3-Channel Laplacian edge detec-
tion

Fig. 2. Various edge detection algorithms.

Fig. 3. The bilateral algorithm applied to the original sample image.

The Laplacian operator [10] can be used to analyse an
image for edges in a way that preserves thickness and
intensity (see figure 2b). This gives a useful result for
further analysis of such edges and their conversion to brush
strokes.
To reduce the amount of small details extracted by

edge detection, the bilateral filter [11] can be applied
to the colour image to reduce texture (see figure 3).
Large contrasting edges which typically represent the most
important visual features remain unchanged.
Edges may occur as both changes in colour and changes

in intensity. By applying the Laplacian operator to each
colour channel separately, far more information about
visual features can be extracted, including edges that exist
between colours of equal intensity (see figure 2c). With
this approach, a strong edge is white (detected in all
three colour channels), and a weaker edge might only be
detected in one or two colour channels.

B. Extracting Lines
To paint a line, we start from a single point and extend

the line based on direction, thickness and curvature. In
typical artistic reproductions, we cannot rapidly adjust
these properties, and so we need to apply some cost
function to the search space of brush strokes. This is a
slightly different goal from existing image vectorisation
techniques [12], [13], [14], [15].

The Snakes algorithm [16] can fit a line to a contour
using a cost function. Randomly generated brush strokes
could be matched to the processed image, however for
large images with many lines this approach may be inef-
ficient and give many overlapping lines with no guarantee
of complete coverage.

The A* [17] algorithm can also be used to compute
connectivity information. However, it requires a given
start and end point for heuristic cost calculation, and can
also have significant performance issues as it back-tracks
through the search space.

C. Artistic Interpretation
In an abstract artwork, pertinent shapes and objects are

often emphasised, while background shapes and context
may be ignored completely. The human visual system is
supremely well adjusted to the environment that we exist
in and thus classification is not an arduous task; however
computer vision algorithms have no intrinsic ability to
classify objects in a scene and to rank their overall im-
portance. Semantic classification of objects can be used for
brush stroke selection and other stylistic decisions [18], but
these techniques are not a primary focus of this research.
Therefore, we will avoid any kind of local classification and
focus on producing brush strokes accurately for all features
in a given image.

In pictures painted using only a small number of colours,
we have a limited ability to separate objects based on
colour and texture alone. Brush stroke contour, thickness
and direction can separate objects, but without the ability
to recognise discrete objects, isolating brush strokes to
individual objects is challenging. Computer vision algo-
rithms are typically unable to identify one object from
another without advanced knowledge and classification
systems, which can make it difficult to establish accurate
line connectivity. Therefore in this respect we will simply
pay particular attention to the form of important edges,
while ignoring irrelevant texture and detail as much as
possible.

In all painted artworks, a sense of depth can be created
by the artist by understanding the relative positions of



Fig. 4. An example of the intensity scanning process with R = 5.

objects in a scene. Lighting and shadows pay a large part
in establishing the correct interpretation of an artwork, as
well as geometric effects such as occlusion. Some computer
vision systems allow for the analysis of depth, but robust
systems for analysing lighting and shadows do not yet
exist. In general, we will rely on our analysis of the source
image to provide sufficient visual cues for depth related
phenomenon, however further interpretation could assist
with isolating important visual elements such as shadows
and continuous segments which have been occluded.

III. Method
A brush stroke is a sequence of points, where each point

specifies an (x, y) coordinate and the width of the brush
stroke at that point. With this information, we can create a
basic painting robot. Additional information such as colour
can be computed from the source image or generated
dynamically.

A. Intensity Scanning
The image is initially processed by firstly applying the

bilateral filter, and then applying the 3-channel Laplacian
operator to extract edge information.
An intensity scanning algorithm performs a sequence

of evenly distributed vertical and horizontal scans on the
image. The distance between scanlines is dictated by R
(the inverse scan resolution). Each pixel is tested for
intensity using a normalised Euclidian distance function:

Intensity(R,G,B) =

√
R2 +G2 +B2

√
3

We then extract a set of ranges of high intensity (see
figure 4). A range consists of the start of a high intensity
pixels, and the length that this high intensity sequence
continues for.
For each extracted range, a circle is constructed with

centre point x, y from the middle of the range, and di-
ameter being the length of the range. This circle is then
checked for coverage by calculating the number of high
intensity pixels.

PixelsInCircle(image, circle, tolerance)

AreaOf(circle)

Fig. 5. An example of the quad-tree containing a set of intensity
circles. An example of a line being formed can be seen.

If the coverage is not greater than a given minimum per-
centage, we reduce the size of the circle by a small amount
and repeat this test. We continue until the coverage is
satisfactory; we discard circles that become too small.

B. Forming Lines

After processing the input as above, we have a set of
circles covering areas of high intensity (see figure 5). We
could simply paint each circle an appropriate colour, and
we would be done. However, we wouldn’t have achieved
much more than a dot matrix printer style reproduction.
Joining the circles together to form lines allows us to start
producing an artistic result.

There are a number of criteria to consider depending on
the desired output:

• We might have a preference for longer strokes rather
than short strokes. Many short brush strokes might
create unwanted texture.

• It might be difficult or unnatural to frequently move
the brush at odd angles. Brush strokes potentially
look better when they are straight or gently curved.

• Reduce overlapping brush strokes. If the output is a
wet ink - we can only cover the same spot a certain
number of times.

To build a line, we use a greedy search. We pick any
circle at random, and then build a set of potential can-
didates for connection based on Euclidian distance. We
then feed these candidates through a cost function, and
insert the results into a heap. After processing all possible
candidates, we select the best choice from the top of the
heap. We continue to build the line until there are no
further candidates within a certain cost threshold.

After processing the line as far as we can in one direc-
tion, we reverse the line and continue processing. This has
the effect that the line ultimately ends up being as long
as possible in both directions from the starting point.

A quad-tree is used to improve the speed of space
queries. It can also be used to perform pruning of the
initial data-set, which can reduce the generation of lines
that overlap and improve performance.



(a) Round Brush Strokes (b) Stylised Brush Strokes

Fig. 6. Various Brush Styles

(a) Sumi-e Colour Rendition (b) Colour Boost Rendition

Fig. 7. Various Colour Renditions

C. Cost Functions

The line generation algorithm is highly sensitive to the
cost function used. There are several criteria calculating
the cost between an existing line and a candidate point:

• Keep the line as straight as possible.
• Ensure that the line contains all points along the

given contour.
• Avoid crossing colour boundaries.
• Avoid crossing low intensity edges (i.e. gaps).
• Avoid rapidly changing line thickness.

Based on these criteria, we can formulate many different
cost functions. An example of a simple cost function is
given:

1: procedure SimpleCost(image, line, point)
2: d← DistanceBetween(EndOf(line), point)
3: if Size(line) ≥ 2 then
4: a← AreaOfTriangle(LastSegment(line), point)
5: else
6: a← 1
7: end if
8: i← IntensityBetween(EndOf(line), point, image)
9: return d× a+ 1.0

i
10: end procedure

D. Simulated Painting
Due to lack of a suitable robot, painting has been

simulated to test accuracy.
A water colour style [1] is difficult to simulate accurately.

Thus, we will opt for a basic subtractive colour model with
alpha accumulation and blending. This will be sufficient
for a creative visualisation and testing purposes.

Two brush stroke algorithms were implemented (see
figure 6): the circle brush uses polygons to render the
sequence of circles based on the measured diameter at
each point, while the spline brush uses Hermite spline
interpolation for the edges of the brush stroke and a
stylised stroke outline (tapered entry, rough exit) to more
accurately simulate a simple brush.

There are several options for choosing colour (see figure
7). Traditional sumi-e renditions use a strong black ink.
Other options include processing the colour at each point
along the brush stroke i.e. average, median, or point
sampled colour.

As an experiment to increase the liveliness of the ren-
dition, a colour boost model was implemented, where
approximately every 3rd brush stroke would have the
saturation and brightness of its colour boosted. This was
done by converting the average colour along the brush
stroke into HSV, boosting the appropriate values, and then
converting back into RGB for output.



(a) Original Image (b) Reproduced Image

Fig. 8. The input and result of running the intensity scanning algorithm during the synthetic accuracy test.

IV. Results

Although the overall intrinsic result qualitatively ap-
pears good, the challenge is to quantify artistic perception.

A. Performance

The general performance of the algorithm is highly
dependent on both the efficiency of space queries and the
cost function. The initial implementation did not use space
partitioning and the performance was O(N2). The use
of a quad-tree improves the general performance of the
algorithm to O(N logN).
The scan resolution also heavily affects the performance

of the scanning algorithm as more pixel data must be
processed:

Intensity Scan Stroke Generation
R Circles Time Strokes Time
1 40189 2.0s 2640 110s
2 20162 1.0s 1214 27s
4 10031 0.47s 570 8.6s
8 4995 0.27s 238 2.5s
16 2458 0.11s 67 0.67s

In this case, the number of strokes generated is roughly
proportional to the number of circles generated.

B. Accuracy

The general accuracy of the intensity scanning algo-
rithm is good. If we run the algorithm at R = 2 or
R = 4 we get high accuracy as well as good performance.
However, as we increase the scan resolution (e.g. R = 1),
we also increase the chance of overlapping brush strokes.
Accuracy can be measured by running the algorithm on

a black and white input image, and stroking the output
paths using a stylistic brush stroke (see figure 8) . We can
then measure the ratio of correctly coloured pixels:

Spline Brush Accuracy
R White Black Difference
1 0.9858 0.9691 0.0167
2 0.9884 0.9648 0.0236
4 0.9904 0.9580 0.0324
8 0.9925 0.9347 0.0578
16 0.9940 0.8207 0.1733

Circle Brush Accuracy
R White Black Difference
1 0.9871 0.9581 0.0290
2 0.9899 0.9473 0.0426
4 0.9913 0.9268 0.0645
8 0.9933 0.8893 0.1040
16 0.9946 0.7462 0.2484

In this test, we want to maximise both black and white
accuracy, however as this algorithm is ultimately given
some degree of creativity, 100% accuracy may also not be
desirable.

V. Conclusion

The performance and accuracy of the algorithm are
generally good. Sample images were processed in under
a minute and produced pleasing output. In the synthetic
case, accuracies in excess of 90% were achieved. In general,
images can be systematically converted to brush strokes,
and this data is suitable for input to a robotic painting
system.

A. Limitations
In rendering the final set of brush strokes to a can-

vas, overlapping layers of ink may produce undesirable
disfigurement of the painting surface. Several approaches
to culling have been explored, but more work in this
area is necessary to ensure that culling does not affect
accuracy. Culling can also be useful as a way to improve
the efficiency of the line formation process, by pruning the
number of possibilities that need to be considered when
forming lines.



Fig. 9. A processed photograph of a Bonsai tree.

Due to the nature of artistic reproductions based on
brush strokes, various visual features will be lost in the
painting process. The goal of this algorithm is to retain
the most important features in a way that is aesthetically
pleasing, however due to the lack of a precise definition,
there will always be some subjective elements in the
quality of the results. Further work in the area of object
identification could improve the ability of the algorithm
to form brush strokes that match human expectations.

B. Future Work
The output of this algorithm is suitable for input to

a robotic function, but such a robot has yet to be con-
structed and programmed.
It is hard to conceive of an ideal cost function, and

thus experimentation in this area could continue to yield
improvements to accuracy and artistic value.
The algorithm currently uses input from an intensity

image created using edge detection. However, this is not
the only kind of input that could be used to create artistic
imagery. Several approaches have been considered for
future experimentation:

• Use edge detection as currently implemented, but also
fill in contiguous regions of specific colours for high
intensity coverage (i.e. black).

• Use an image pyramid to detect large regions of
consistent colour, and then use this information for
‘washes’ (large brush strokes which apply a small
amount of colour).

References
[1] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer,

and D. H. Salesin, “Computer-generated watercolor,” in SIG-
GRAPH ’97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 1997, pp.
421–430.

[2] M. Shiraishi and Y. Yamaguchi, “An algorithm for automatic
painterly rendering based on local source image approximation,”
in NPAR ’00: Proceedings of the 1st international symposium on
Non-photorealistic animation and rendering. New York, NY,
USA: ACM, 2000, pp. 53–58.

Fig. 10. A processed photograph of a Buddha.

[3] A. Hertzmann, “Painterly rendering with curved brush strokes
of multiple sizes,” in SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interactive tech-
niques. New York, NY, USA: ACM, 1998, pp. 453–460.

[4] M. Obaid, R. Mukundan, and T. Bell, “Enhancement of mo-
ment based painterly rendering using connected components,”
in CGIV ’06: Proceedings of the International Conference on
Computer Graphics, Imaging and Visualisation. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 378–383.

[5] G. Winkenbach and D. H. Salesin, “Rendering parametric sur-
faces in pen and ink,” in SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM, 1996, pp. 469–476.

[6] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin,
“Orientable textures for image-based pen-and-ink illustration,”
in SIGGRAPH ’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. New York,
NY, USA: ACM Press/Addison-Wesley Publishing Co., 1997,
pp. 401–406.

[7] R. M. Pirsig, Zen and the Art of Motorcycle Maintenance: An
Inquiry into Values.

[8] J. Canny, “A computational approach to edge detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 8, pp. 679–698, Jun.
1986.

[9] R. O. Duda and P. E. Hart, “Use of the hough transformation
to detect lines and curves in pictures,” Commun. ACM, vol. 15,
pp. 11–15, January 1972.

[10] E. C. Hildreth, “Edge detection,” Cambridge, MA, USA, Tech.
Rep., 1985.

[11] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images,” in ICCV ’98: Proceedings of the Sixth Interna-
tional Conference on Computer Vision. Washington, DC, USA:
IEEE Computer Society, 1998, p. 839.

[12] X. Hilaire and K. Tombre, “Robust and accurate vectorization
of line drawings,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 6, pp. 890–904, 2006.

[13] P. Selinger, “Potrace,” [Online; accessed June-2010]. [Online].
Available: http://potrace.sourceforge.net/

[14] T. Xia, B. Liao, and Y. Yu, “Patch-based image vectorization
with automatic curvilinear feature alignment,” ACM Trans.
Graph., vol. 28, no. 5, pp. 1–10, 2009.

[15] J. Sun, L. Liang, F. Wen, and H.-Y. Shum, “Image vectorization
using optimized gradient meshes,” ACM Trans. Graph., vol. 26,
no. 3, p. 11, 2007.

[16] A. W. Michael Kass and D. Terzopoulos, “Snakes: Active con-
tour models,” vol. 1, no. 4. Springer Netherlands, January 1988,
pp. 321–331.

[17] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost paths,” IEEE
Transactions on Systems Science and Cybernetics SSC4 (2), pp.
100–107, 1968.

[18] K. Zeng, M. Zhao, C. Xiong, and S.-C. Zhu, “From image
parsing to painterly rendering,” ACM Trans. Graph., vol. 29,
no. 1, pp. 1–11, 2009.


