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UNIVERSITY OF CANTERBURY

Abstract

Human Interface Technology Laboratory New Zealand

Department of Computer Science and Software Engineering
Master of Science in Computer Science

Real-Time Hybrid Tracking for Outdoor Augmented Reality

by Samuel WILLIAMS

Outdoor tracking and registration are important enabling technologies for mobile
augmented reality. Sensor fusion and image processing can be used to improve
global tracking and registration for low-cost mobile devices with limited computa-
tional power and sensor accuracy. Prior research has confirmed the benefits of this
approach with high-end hardware, however the methods previously used are not
ideal for current consumer mobile devices. We discuss the development of a hybrid
tracking and registration algorithm that combines multiple sensors and image pro-
cessing to improve on existing work in both performance and accuracy. As part of
this, we developed the Transform Flow toolkit, which is one of the first open source
systems for developing and quantifiably evaluating mobile AR tracking algorithms.
We used this system to compare our proposed hybrid tracking algorithm with a
purely sensor based approach, and to perform a user study to analyse the effects of
improved precision on real world tracking tasks. Our results show that our imple-
mentation was an improvement over a purely sensor fusion based approach; accuracy
was improved up to 25x in some cases with only 2-4ms additional processing per

frame, in comparison with other algorithms which can take over 300ms.
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Chapter 1

Introduction

Augmented reality (AR) is a technology that allows virtual content (such as text,
pictures, 3D models and sounds) to be blended with images of the real world[5]. AR
systems have been an exciting research area for over 40 years. Recently the technol-

ogy has been deployed on mobile devices[6, 7] and used in outdoor applications[8, 9].

FIGURE 1.1: An example of virtual furniture being overlaid on a video stream
from a commercial project, FurniView][1].

Typical outdoor AR systems such as Layar[10], Wikitude[11] rely on the global
positioning system (GPS), magnetometer (compass), gyroscope and accelerometer
sensors to provide position and orientation information. However, in practice these
sensors often have a large degree of error and can be easily affected by local envi-

ronmental phenomenon[12].

This project investigates how to improve both global and local tracking using sensor
fusion and computer vision techniques, within the limitations of current consumer

mobile devices.
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1.1 Problem

AR systems deal with two fundamental technical challenges: tracking the camera’s
position and orientation in the real world, and registering virtual object geometry
with images taken from the camera. A typical AR system, as shown in Figure 1.2,
combines various forms of data from one or more physical hardware sensors along
with virtual content to produce a visual experience. The usability and quality of

an AR system is directly related to how well the system addresses these challenges.

Virtual Content Existing Reality Sensors
Global Position Global position Global Position | GPS
) based registration ) no.n
Orientation Heading ——— Magnetometer
(x:2.0) ®) ®)
Feature Points |~ Gravity . @——— Accelerometer
™~ (8% 8. 82) (ax, 2y, az)
j Local image j I
based registration
™~ | G
~ magery yroscope
Metadata (R.G.B)[x.Y] (6x, 6y, 6z)
Camera
E— Registration —

:

Augmented Reality

F1cGURE 1.2: The conceptual organisation of a typical AR system.

Outdoor AR encompasses the problem of visualising geographically registered data
sets with a mobile phone or tablet that includes a camera, a set of inertial sensors
(henceforth referred to as sensor data) and some kind of video output. The most
challenging part of outdoor AR is tracking the camera pose with respect to a ge-
ographical frame of reference[13]. Modern mobile devices provide us with a wide
range of inputs, yet, in practice, consumer level sensors have insufficient accuracy

for precise tracking (an example of compass accuracy can be seen in figure 1.3).

Tracking accuracy directly affects the quality of outdoor AR applications[14-16]. In

particular, knowing the users current position and orientation is critical for aligning
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FIGURE 1.3: An example of sensor error in the magnetic compass: a variety of
different devices are all measuring a different magnetic north. Ideally, they’d all
be pointing in the same direction.

virtual content correctly. A combination of physical sensors and visual data can
be used to compute accurate sub-pixel alignment, however the organisation and
structure of the data processing will affect the performance and accuracy of the

position and orientation calculations.

A significant amount of research has already gone into solving many of these prob-
lems, including how to deal with sensor drift using visual information[12] and how
to improve orientation estimation using natural feature tracking[17]. However, the
majority of this research has been done using custom hardware and with specific ap-
plications in mind, and is thus unsuitable for deployment on consumer-level mobile

devices.

Our research focuses on adapting existing approaches and designing new algorithms
to improve outdoor AR on modern mobile devices. We explore how much the sta-
bility and responsiveness of outdoor augmented reality tracking can be improved
by combining multiple sensors, with a particular focus on the sensors available in
modern consumer mobile phones and tablets. We discuss the process of developing
an efficient visual tracking algorithm using motion estimates; this method will lever-
age sensor readings to minimise the costs associated with feature point detection
and alignment, and take inspiration from existing hybrid tracking algorithms where

possible.
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1.2 Major Contributions

My thesis research was driven by the following key outcomes:

o A sensor fusion based tracking algorithm based on existing methods.

A hybrid tracking algorithm utilising sensor fusion based tracking and com-

puter vision techniques.

o A framework for evaluating the accuracy of tracking with systematic data

sets.

o An implementation of the algorithm in a software library for the iPhone plat-

form.

o A demonstration mobile outdoor AR application based on the software library.

In Chapter 2 we discuss existing approaches to tracking and registration. Our
proposed algorithm is described in detail in Chapter 3 and Chapter 4. Chapter 5
explains the tools we developed to support this research, which were then used to

evaluate our proposed algorithm in Chapter 6.



Chapter 2

Background

In 1968, Ivan Sutherland developed the first optical see-through system, which when
mounted to a user’s head, could respond to changes in position and orientation[18].
It combined both a mechanical arm and ultrasonic transmitters/receivers to calcu-
late the head pose (position and orientation) with low latency. Despite the limita-
tions in computing power at the time, simple wireframe models could be rendered
and presented using stereographic projection with separate CRT displays for each

eye.

“The WearComp 17, developed in 1980 by Steve Mann[19], is generally recognised as
the first wearable computer to include visual augmentation. It featured a camera
mounted on the user’s head and an eye-level video see-through display. It was
primarily used for photography and light painting, and was the first in a long line
of prototypes.

Ten years later, the term “augmented reality” is believed to have been coined by
Tom Caudell while working at Boeing as a researcher, with the first demonstratively
useful system being developed by Louis Rosenberg in 1991 at the U.S. Air Force
Research Laboratory|[20].

Since then, AR technologies have continued to evolve - and, unsurprisingly, the mo-
bile phone has received an increasing amount of interest from both researchers and
commercial ventures as a platform for AR applications|[21]. Modern mobile phones
are sufficiently powerful enough for a variety of different tracking and registration

tasks[22], but despite significant progress, many technical challenges remain. We
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investigate the current state of the art, and identify the issues which need to be

addressed to produce robust mobile outdoor AR systems.

2.1 Mobile Hardware

Mobile phones present a unique opportunity for AR applications due to their conve-
nient size, configuration and availability (over 400 million smart phones sold in the
first half of 2013[23]). A typical modern mobile phone includes one or two cameras,
a bright touch screen designed for outdoor use, and a reasonable level of processing
power. However, despite significant advances, mobile phones still require specific
algorithms and software engineering knowledge to ensure reliable and well-behaved

applications (e.g. battery drain, heat output)[21].

Modern AR applications often depend on algorithms which employ image processing
and complex interactive 3D graphics overlaying video input. Existing desktop AR
applications might not perform well when ported directly to a mobile phone[24, 25],
because of the reliance on desktop class hardware and assumptions about connectiv-
ity. Conversely, mobile AR applications designed specifically for mobile hardware
including the available sensor data and camera/screen configuration would not work

on desktop class hardware.

In addition, mobile hardware can be difficult to work with due to the wide range
of available devices. Physical size, shape and form factor, camera intrinsics and
positioning, sensor accuracies, screen resolutions, processing power, and rendering
capability can vary significantly across consumer-level hardware and may present
problems when implementing applications that should work seamlessly for as many

users as possible.

2.1.1 Adaptive Tracking

Many algorithms naturally have an accuracy/efficiency trade-off. Sometimes, the
performance characteristics can be statically adjusted at compile-time, e.g. the in-
put video frame resolution, the search window size, the number of feature points per
frame, etc. In addition, some algorithms can be dynamically adjusted at run-time,

adapting to the user’s behaviour and the level of accuracy required, as shown in
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Figure 2.1. By reducing processing requirements, battery usage and heat output

can be reduced.

Low Accuracy High Accuracy
Tracking Tracking
Task Driven

Gaming Architecture

Sensor Driven

Camera pointing ‘ . Camera pointing
vertically horizontally

User moving M User stationary

Distance objects Close objects

FIGURE 2.1: An overview of the adaptive continuum whereby some situations
require more accuracy than others.

Vision processing is a relatively expensive operation when compared to sensor fusion,
and if accurate tracking is not required, sensor fusion alone may be sufficient for
calculating the camera pose. Urban environments, such as cities, where sensor data
including from the GPS and magnetometer may be highly inaccurate[26, 27] could
benefit significantly from image based tracking. By observing the error in sensor

measurements, image processing algorithms could be used only when required.

2.2 Authentic Experiences

Users have authentic AR experiences when the visual cohesion between the real
world and virtual content is maintained precisely and realistically. Tracking and
registration errors, including drop outs, misalignment, failed initialisation, and drift,
have such an effect on the experience that they make AR systems unusable or
unsuitable for practical deployment[13, 16]. Thus there has been a large amount
of research with focus on tracking and registration in the last two decades with

ongoing work still required to improve accuracy and efficiency of these systems.
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Ideally, applications should provide reliable and unrestricted end-user experiences,
but this usually requires task-specific algorithms that give the best possible results
for a specific interaction, and often fail or work poorly in other situations. Algo-
rithms based on fiducial markers[2], like the one shown in figure 2.2, can have pixel
accurate alignment, but the visual marker must always be clearly visible through
the camera, which limits the way the user can interact with the content. Discon-
tinuities like this break the illusion that the augmented content exists in the real

world.

1

FIGURE 2.2: ARToolKit[2] based fiducial marker tracking using the Dream
framework([3]. Although the user can draw anywhere, it can only be rendered
correctly when the marker is visible.

Applications which require geographical alignment[28] often focus on computing a
global frame of reference (i.e. latitude, longitude). This allows users to experience
content registered with real world positions. However, typical consumer level hard-
ware is unable to compute a global frame of reference with sufficient accuracy for
precise visual alignment[26, 29]. High quality hybrid approaches[22] are therefore
critical for applications that want to provide genuine end-user interactions that

depend on both accurate local and global registration.

2.2.1 Practical Usability

It has been identified that tracking and registration are critical for usable AR
applications[30]. Unless the objects in the real world and virtual world are aligned
with respect to each other, the illusion that the two worlds coexist may be com-

promised[31]. The human eye can differentiate between a dark and light bar grating
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where each bar subtends about one arc minute[32]; similarly, with the availability of
high resolution cameras and displays in consumer level mobile devices, the tolerance

for visual alignment errors in video see-through displays is continually decreasing.

A recent study has shown that when an application presents multiple interfaces, e.g.
a map, a compass and an AR view, users tend to avoid AR visualisations, and visual
jitter has been identified as one possible reason for this[16]. Accurate tracking itself
is an enabler for different kinds of interactions, e.g. pedestrian navigation, landmark
identification, but the quality and performance of the algorithms employed will have

a significant effect on the overall usability of an application.

2.3 Visual Tracking and Registration

Purely image based approaches to tracking and registration can be used for com-
puting a local frame of reference over multiple individual frames. Existing research
in this area is typically developed for desktop class hardware or specialised robotic
platforms(33] making it unsuitable for use on mobile hardware. However, computer
vision techniques provide opportunities for improved tracking and registration for
outdoor augmented reality and thus we investigate how they can be adapted to

improve efficiency.

Optical flow[34-36] is the visual motion of specific features in sequential video frames
caused by movement of visible objects or the camera. Optical flow measurements
can be used to calculate changes in camera pose and object positions and thus can
be used for both tracking and registration related tasks. A set of visual corners or
feature points is typically used as an input to typical optical flow. However, even
modern algorithms designed for efficient implementation[37-40] performed poorly in
our tests on current mobile hardware (detailed results are shown in Table 3.4). Our
observations are supported by a performance comparison on high end hardware[4],
we republish their results in Table 2.1. Optical flow itself provides sub-pixel accu-
racy but practical implementations would need to be improved by several orders of
magnitude before being efficient enough for real time operation on current mobile

hardware.

OPIRA[41], shown in figure 2.3, uses a pre-determined database of feature points
and image rectification to locate planar surfaces in real-time. The image rectifica-

tion provides perspective invariance, which allows the algorithm to register content
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TABLE 2.1: Average Processing Time of Visual Descriptor Algorithms for the
Computation of 500 descriptors[4]

SIFT SURF BRIEF ORB BRISK FREAK
43.45ms 13.43ms 1.43ms 1.36ms 2.11ms 1.09ms

accurately, even at highly acute angles. However, OPIRA doesn’t provide support
for camera pose tracking except in relation to these specific natural features, and

thus isn’t suited for dynamic tracking in an unknown environment.

FIGURE 2.3: An example of OPIRA using image based registration to overlay a
teapot model on the sign. In this case there is no global frame of reference.

BoWSLAM][42] matches 3-dimensional feature points and is designed to overcome
robustness issues with previous wide-area single camera SLAM implementations. It
builds a high-level bag-of-words representation of every frame so that new frames
can be robustly matched even during very erratic motion, in the presence of mov-

ing objects, following large loops, or in other difficult situations where traditional
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feature point tracking approaches would fail. However, BOWSLAM was designed
for mapping long trajectories. On a small scale, in a static environment, it isn’t
designed to give the same level of accuracy that you would expect with traditional

feature point tracking algorithms.

2.4 Global Tracking and Registration

Global tracking is the process of measuring the camera position and orientation
relative to a global frame of reference, such as the Earth-centred Earth-fixed (ECEF)
coordinate system. The ECEF frame of reference has it’s origin at the centre of the
Earth and rotates with the Earth. The X axis passes through the equator at the
prime meridian. The Z axis passes through the north pole but it does not exactly
coincide with the instantaneous Earth rotational axis. The Y axis can be determined

by the right-hand rule to be passing through the equator at 90° longitude[43].

Z ecef
A

FIGURE 2.4: A global frame of reference, ECEF, can map XYZ to a cartesian
East-North-Up (ENU) coordinate system.

The Global Positioning System (GPS) provides latitude, longitude and altitude
coordinates using the World Geodetic System standard (established in 1984, thus
referred to as WGS84), a grid based geodetic datum that can be used to map
coordinates to an ellipsoid body that approximates the surface of the Earth (e.g.
ECEF or ENU). Altitude, or more accurately elevation, is used to measure the

vertical distance from a reference point, typically the mean sea level (MSL) as

defined by WGS8&4.
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Using raw WGS84 coordinates can be complicated for local registration tasks[44].
The WGS84 latitude and longitude values themselves require significant precision
for calculations (e.g. double-precision floating point numbers in C) which we ob-
served to be inefficient in certain situations on modern mobile hardware. By con-
verting these into a local frame of reference, e.g. ENU, precision issues can be
mitigated and single-precision floating point numbers can be used for positional
deltas.

In addition, physically registered positions on the Earth shift over time with respect
to a coordinate system defined by WGS84[45]. This makes WGS84 a poor choice for
applications that require precise alignment. Country and region specific geodetic
datums (e.g. GDA94 for Australia, NZGD2000[46] for New Zealand) are available
which are updated on a regular basis such that coordinates generally match physical
features. WGS84 coordinates, including the time at which the measurement was
made, can be converted into a local geodetic datum for improved accuracy. However,
the complexities of dealing with region specific geodetic datums is also significant,

and could still include significant position error.

Gravimetric and magnetic forces can be used to calculate camera orientation in
relation to the fixed poles and centre of the earth. The angle between the current
direction and a north-south line (i.e. meridian) is known as bearing, and gravity
provides a vertical reference line for calculating pitch and roll; these measurements

collectively can be referred to as an attitude or pose.

Global registration is the process of positioning content using absolute global coor-
dinates. Given the current global position and orientation in some coordinate sys-
tem, it is possible to calculate the relative displacement of another global position.
Relative positions can be calculated using either spherical coordinates (latitude,

longitude, altitude) or cartesian coordinates (ENU) depending on the application.

2.5 Sensors and Computer Vision

Sensor fusion can be used to improve the quality of sensor measurements by intel-
ligently combining sensor data[l12]. Mathematical models and filters (such as the
complementary filter, Kalman filter or particle filter) can be applied to multiple
sensors to improve the measurement of particular physical attributes[47]. However,

sensor fusion alone only serves to reduce error towards the minimum possible of a
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particular set of sensors, if the sensors include a static bias or dynamic errors to

that effect, the output will always be incorrect.

Sensors Sensor Fusion Existing Reality
GPS —>|  Global Position ——>| Global Position
il
Camera EEE— Imagery
[
Adaptive Accelerometer Local Displacement
il
——»> Optical Flow Global Gravity —P> Gravity
[ il [
Gyroscope Local Orientation
Magnetometer [———®>|  Global Heading f——p> Heading
| | | j

FIGURE 2.5: An overview of how sensor fusion and image processing can be used
to improve accuracy.

To improve on this, computer vision techniques have been used to provide robust
wide-area tracking on wearable computing and laptop based systems[48, 49], with
computations similar to those shown in Figure 2.5. These approaches are typically
computationally expensive, requiring dual-core processors or better[50], and large
amounts of memory[51], which makes such approaches unsuitable for current mobile

devices.

Using vision analysis to reduce errors in inertial sensor measurements is a proven
technique[52]. Sensor data is relatively efficient to compute and use, but suffers
from a variety of issues[12]. Relative inertial sensors, such as the gyroscope, may
drift over time or provide incorrect measurements. Absolute global sensors such as
the magnetometer and GPS may provide incorrect measurements due to local in-
terference and usually have a high latency on consumer grade hardware[29]. Image
based methods are generally robust in such circumstances, but can be computa-
tionally expensive and suffer in cases of visual occlusion, motion blur and rolling

shutter artefacts[53]. These types of visual distortions are especially problematic on
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mobile devices due to the quality of the cameras typically included. If motion can
be accurately measured, it is possible to mitigate both motion blur[54] and rolling
shutter artefacts[24]. By exploiting the complementary nature of these different

inputs, it is possible to produce a more robust and reliable output[55].

2.5.1 iPhone 4 Sensor Accuracy

The iPhone 4 hardware platform has a variety of sensors, each with absolute and
relative error. We measured the typical range for sensor error and latency using
practical observations and present our results in Table 2.2, and our measurements
are supported by others[26, 27]. Because these sensors are used to calculate camera
position and orientation, understanding the nature of the error that exists can allow

us to improve the accuracy of any algorithm that depends on these inputs.

TABLE 2.2: iPhone 4 Sensor Accuracy

Sensor Absolute Error Relative Error Latency
GPS (Horizontal) +10m +10m < 10s
GPS (Vertical) +20m +20m < 10s
Compass +20° +5° < 2s
Accelerometer (Angle) +5° +1° < 20ms
Accelerometer (Force) +0.1g +0.1g < 20ms
Gyroscope 0° +0.1°/s < 20ms

Absolute error is a measure of how much fixed offset is in all results given by a sensor,
such that all measurements within a similar timeframe and position may have the
same offset. Absolute error typically exists because of manufacturing defects or
local environmental phenomenon, and can often be mitigated by calibrating the
specific hardware sensors; in some cases (e.g. the magnetometer) calibration may
need to happen frequently, others (such as the accelerometer) may only need to be

calibrated once.

Relative error is a measure of how much a sensor may deviate from the actual
physical change within a short timeframe. Some sensors (such as the gyroscope)
report changes in physical disposition and thus are subject to increasing integration
error over time (drift). Relative error can often be corrected by checking one sensor
against another to verify changes; if one sensor detects a change, but other sensors

disagree, this typically indicates some kind of relative error.
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Sensor latency is the time it takes for a physical change to be reported in sensor
measurements. Initially, there is some time required for a sensor to respond to a
change, and additional time for a sensor to settle on a final value, as shown in
Figure 2.6. Sensor latency is primarily a result of hardware sampling and filtering
performance. Some sensors can be configured at different sample rates such that
physical changes are measured more rapidly; the rate may also affect the amount
of sensor drift accumulated over time. When sensors are combined together, the

differences in latency may need to be carefully considered.

Physical f------------+ /[—\ i e T l— ——————————
Input ~ p---frm-——- == A " T

Response Time

Error Band

Output .
Measurement

Settling Time >

FIGURE 2.6: An example of a step response (hysteresis) where the output requires
a certain amount of time to respond and settle to a given input event.

2.6 Local-Global Correspondence Problem

Successful outdoor augmented reality depends on accurate tracking and content
registration in relation to a global frame of reference. It is common in mobile
outdoor AR applications to use WGS84 coordinates for registering content, and
ECEF/ENU coordinates for computing relative positions. In addition, image pro-
cessing techniques may be used to improve the precision and functionality of both

tracking and registration.

However, the terms position and location should not be used interchangeably|[56].
A position specifies a tangible point in a specific coordinate system (e.g. WGS84,
ECEF), while a location is an “opportunity to associate meaning” and is identified

using a semantic taxonomy based on a very human appreciation of the world.

This confusion affects AR systems in a number of ways: image based tracking
algorithms can recognise the same object in different positions, e.g. a magazine
cover, which depending on the type of tracking required, could either be a feature
or an error. Alternatively, WGS84 coordinates may be used to refer to a precise
position, but due to the changing environment (e.g. earthquakes), the coordinate

is no longer representing the same physical location, e.g. a door.
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Tracking and registration algorithms that seek to be as accurate as possible should
consolidate all the available position and orientation metrics in a way that relates to
the functionality required. To do this, for a particular tracking and registration task,
we must define a specific frame of reference and map each input into that system.
The challenge of defining an appropriate mapping can be significant. We refer to the
problem of defining and computing this mapping between a local frame of reference
and a global frame of reference as the local-global correspondence problem, and

define some ways in which it affects outdoor AR systems.

2.6.1 Static Positioning

The most effective sensor for global position estimation on a mobile device is the
GPS. Local features can also be identified visually and used to estimate position via
a camera, but this requires some pre-established model of the local environment.
Calibration errors and physical interference may affect the GPS and cause significant
errors. In an urban environment, buildings and walls reflect the GPS signal and
cause multi-path signal errors, while overhead foliage can attenuate and scatter the
signal. These errors may cause significant problems when correlating visual and

sensor based positions.

A region or country specific geodetic datum allows content to be physically reg-
istered in a frame of reference with a well defined mapping to a global frame of
reference (e.g WGS84 from the GPS). This allows for physically registered locations
to be accurately positioned even in the event that the local geography changes over
time. However, the geodetic datum must be available and up to date for a specific

area, and if not, errors in registration could get worse over time.

Global orientation estimation typically requires input from the magnetometer to
compute bearing and fusion between gyroscope and accelerometer to compute grav-
ity. Large scale local magnetic phenomenon (e.g. the composition of the tectonic
plates) introduce a static bias into the bearing calculations which means that we
have two effective bearings: a magnetic north, and a true geodetic north. Magnetic
north points along the magnetic axis of the Earth, while true north points towards
the geographic north pole. The difference between these two measurements is re-
ferred to as magnetic declination, and varies with both time and place. Therefore,
to calculate true north, the position of the device is measured using GPS and a

global datum (updated on a regular basis) is used to compute a static bias which
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used to adjust the magnetic north vector. Lack of, or error in position measure-
ments, or in the dynamic datum, may affect the quality of the true north bearing

significantly.

2.6.2 Pose Tracking

Changes in position can be measured using the GPS, but the update rate on mobile
devices is typically slow (e.g. 1Hz+ updates) and the actual measurements are
usually inaccurate, especially in consumer level hardware[29]. The accelerometer
can be integrated twice to measure relative changes in position rapidly, but we
found that due to noise the error accumulates rapidly which makes it unusable in
practice, without compensation from another input. Unfortunately, the latency of
mobile phone GPS is not good enough to provide this correction without introducing

significant positional errors.

Relative changes in orientation can be accurately measured using the gyroscope.
The gyroscope on modern mobile phones is accurate and can be integrated once
to get absolute change in orientation with acceptable errors and drift. The magne-
tometer provides an XYZ magnetic field vector, which can also be used to measure
orientation. Combining these two sensors together could reduce gyroscope drift,
but the magnetometer is very sensitive and can be easily affected by local magnetic

objects which makes it difficult to use in practice.

2.6.3 Content Registration

Accurately registering content against the current global frame of reference can
be done precisely by calculating the relative position from the current camera pose.
The error in registration will be exactly that of the current global frame of reference.
To improve on this, information may be aligned to visual features if they are found
within the image data. However, visual features may not be in the same frame
of reference, which means that they’d need to be tracked separately. By tracking
visually aligned content separately, it can be registered accurately despite errors in
the global frame of reference. However, there could be a significant error as content

shifts from one frame of reference to another.
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Content which is registered visually can also be visualised differently from content
that is only visualised in a global frame of reference. If visual features are identi-
fiable, it means that the content is likely not occluded. If feature points are not
visible, some other visualisation may be more appropriate. Errors in the image
based registration might be interpreted as occlusion despite no occlusion actually

occurring.

2.7 Simultaneous Localisation and Mapping

Recently, single-camera Simultaneous Localisation and Mapping (SLAM) algorithms
have been investigated for use on mobile devices[57]. Camera based SLAM algo-
rithms typically perform two tasks sequentially: for each video frame, compute the
local camera pose from the visual information using a database of feature points (if
available), and then expand and refine that database based on new and updated

visual features that have been identified.

Panoramic Mapping[22] is a dense SLAM style algorithm that can track changes
in camera orientation. It projects visual features on to a cylindrical map and uses
this to track camera orientation by matching feature points from the camera input.
Sensor data is used to estimate the initial pose of the camera and project the first
frame into the cylinder, but is not used in any way to optimise the SLAM process
later on. The proposed implementation processed frames at a resolution of 320 x 240
at 30Hz and uses a dense database of pixels at a resolution of 2048x512. We estimate
that a 14 megapixel (56 megabytes of raw RGBA) map would be required to process
video at 720p using the same method. The published results[22] indicated a failure

rate of 15% with 30 test data sets, primarily due to poor feature point detection.

Parallel Tracking and Mapping (PTAM) is a method of estimating local camera
pose in an unknown scene with a single camera, and was first implemented using
desktop class hardware[58]. It was later modified to run on a mobile phone[24]
with reasonable success. The algorithm splits the processing into two distinct parts
that are processed in parallel on different CPU cores. Localisation is performed
every video frame (where possible), and the published results[24] indicate that it
took approximately 30ms which is barely sufficient for 30Hz operation; and due to
limitations in the camera the maximum speed achieved was 15Hz. The mapping

process, running on a background thread, receives sequential frames and builds a
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database of feature points. Bundle adjustment is used to refine individual feature
points and the published research indicates that it took 750ms to process 35 frame
bundles, or 20ms per frame. Recent research has been critical of the accuracy of
PTAM[59] which reflects our own experiences with the provided implementation.
Furthermore, despite running on a mobile phone with inertial sensors, the algorithm

was not modified to leverage these in any way.

2.8 Model-based Tracking

Model-based tracking can improve the accuracy of global position by identifying
the pose relative to some known structure in the local environment[49]. Models can
include a wide variety of features, e.g. buildings, roads, signs, or any other easily
recognisable visual feature. By extracting visual features and matching these with
the model, the camera pose can be calculated. This process may fail if there are
significant changes in the environment: new permanent structures or temporary
features may cause significant problems when matching features. Thus, over time,
models need to be maintained and kept up to date, making this approach unsuitable

for general purpose outdoor augmented reality in unknown environments.

The initialisation problem, where the camera pose is established relative to a given
model for the first time, can be computationally expensive. Existing approaches
which combine sensors and visual information have been shown to improve the
performance and quality of tracking, but in difficult situations took up to 12 seconds
to compute the camera pose, which makes them unsuitable for practical mobile
use[60].

Recently, dense point clouds[61] have been considered for mobile AR localisation.
Panoramic images can be generated from point clouds and used for localisation
within the point cloud model; by combining existing image based approaches with
the available sensor data on modern mobile phones, the processing costs associ-
ated with the initialisation problem can be reduced significantly[62], however, the

demonstrated approach still requires 22ms per frame, a significant overhead.



Chapter 2. Background 20

2.9 Gravity Aligned Features

The gravity vector provides a locally consistent frame of reference in which vi-
sual information can be processed. Gravity aligned feature descriptors have been
shown to improve the reliability and performance of existing feature matching
algorithms[63, 64]. However, while the gravity vector improves quality of feature
matching, it was not leveraged to improve actual performance of the feature extrac-

tion process which is one of the most costly parts of the tracking algorithm.

A recent implementation building on this research confirmed the benefits of gravity
aligned features[62], but in practice found that they still suffered from many of the
issues affecting non-gravity aligned features, such as difficulty dealing with the types
of structural similarity common in urban environments (e.g. buildings with lots of

similar windows).

The gravity vector can be used to extract gravity rectified planar surfaces, which
can be used to improve tracking and registration of content against flat (horizontal)
pages or magazines[65]. We explored whether this would be useful for outdoor
AR but concluded that this approach wasn’t viable in general. In many cases,
the ground plane was not sufficiently visible for accurate tracking and non-planar

features could cause significant artefacts in the final unwrapped image.

Modern mobile platforms (including iOS and Android) provide at least a basic
level of integrated sensor fusion which includes the gravity vector as an output.
Tracking systems which depend on custom hardware or platforms usually implement
custom low level sensor fusion algorithms[49]. By depending on the platform’s
native low level sensor fusion implementation, it is possible to reduce the amount of
computation required; dedicated hardware which offloads low-level sensor processing

is already available in consumer level hardware and we expect this trend to continue.

2.10 Testing Methodologies

Testing and evaluating tracking algorithms designed for mobile devices is currently
unsystematic[24, 57, 66]. This is a big problem for new research which seeks to
improve on existing approaches, because it makes it hard to compare results objec-

tively.



Chapter 2. Background 21

Even as recently as 2009, researchers were developing custom devices for outdoor
AR|[67] research. Tracking algorithms are often structured around poorly specified
platforms and obscure hardware[49, 60, 67]; missing details or obsolete hardware
make identical reconstruction, and thus comparisons based on published results,

impossible.

Data sets and testing tools are often not publicly published[17] which makes it diffi-
cult to check whether a new approach is a significant improvement over existing
methods. In particular, algorithms that fail on specific edge cases[57] warrant fur-
ther analysis and study; but without the specific data sets and systematic evaluation

tools this is not possible.

Similarly, public data sets commonly used for computer vision evaluation don’t
include inertial sensor measurements[68-70], which makes them inappropriate for
modern mobile AR research[65]. Inertial gravity measurements have been synthe-
sised from ground truth camera poses, which allows some types of hybrid tracking
algorithms to be benchmarked on existing data sets[64], however other sensors in-
cluding gyroscope, magnetometer and compass were not considered. Modern hybrid
algorithms may depend on a full range of inertial sensor measurements to operate
correctly and efficiently, and thus prior work evaluated with these data sets would

not be easily comparable.

Modern consumer mobile phones and tablets provide an excellent variety of sensors
in low cost, readily available off-the-shelf packages. This is an ideal platform for
many types of AR research, because it is representative of the type of environment
algorithms would be expected to work in if deployed to a wider audience. However,
despite this level of standardisation, we lack modern tools and data sets for testing

and evaluating tracking algorithms on these platforms.

2.11 Source Code Availability

Published research in mobile AR often lacks source code[57, 65]. There are many
reasons for this: copyright/licensing/intellectual property restrictions, poor quality
code (suitable for evaluation but not for actual use), lack of time to properly release
code (documentation, ongoing maintenance, compatibility with multiple platforms);

but practically speaking, it makes the development and testing of new approaches
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difficult. Implementing a tracking algorithm from scratch is a large undertaking

and requires a significant investment of time.

In addition, published data sets and evaluations generated using a specific hardware
device quickly become obsolete, as the hardware and sensors are constantly improv-
ing and changing. To accurately compare algorithms on consumer level hardware,
a working implementation is required, otherwise performance and accuracy cannot
be accurately compared. Therefore it is necessary to have access to the source code

to perform a realistic comparative analysis of any kind.

The pace of rapid innovation in consumer mobile devices drives changes in the sup-
porting mobile operating systems (OS), including the software frameworks and li-
braries on which our tracking and registration algorithms are built. Major platforms
(e.g. Android, iOS) are completely different in their underlying implementations,
such that compiling code for multiple platforms can be a huge burden. There is
a culture in commercial AR of only providing the compiled static library, but as
hardware changes, these libraries may stop working, and fixing these bugs is prac-
tically impossible. If the source code is available and of a reasonable quality, many

of these issues at least become addressable.

2.11.1 Existing Projects

We found several open source projects which implement inertial sensor based mo-
bile AR tracking algorithms. However, many of the most promising ones seem
unmaintained[71-73]. Other libraries that are maintained, are typically either de-
vice specific[74] or application specific[75]. None of the available open source li-
braries provide specific tools for the development and evaluation of mobile outdoor

AR tracking algorithms.

2.12 Summary

We have done a thorough review of existing work in the area of outdoor augmented
reality. We have looked at the various tracking and registration methods available,
and found that the practical implementations are not fast enough for real world

use. In addition, few algorithms use available sensor data effectively and thus may
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struggle in cases where visual tracking fails. Because of this, globally registered
AR is still common and this is a major problem for usability. By combining local
and global tracking methods effectively, many of these problems can be overcome,
but the extent to which any proposed algorithm makes an improvement is currently
difficult to assess, due to the limited availability of source code and systematic

testing tools.

Next, we propose a hybrid tracking algorithm which effectively combines both local

and global tracking to overcome these issues.
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Fast Vertical Edge Alignment

We have developed a hybrid tracking algorithm, and a high level overview is shown
in Figure 3.1. The vertical edge alignment algorithm is composed of the steps in

the green boxes, and we walk through these steps in this chapter.

Vertical Edge Alignment [—9> Hybrid Motion Model

: f

Feature Tabl . .
B Basic Sensor Motion Model
Alignment

f f

Integral Sequence
Alignment

?

Feature Table Binning

?

Vertical Edge
Extraction

?

Camera Data

Sensor Fusion

FI1GURE 3.1: The structure of our proposed hybrid tracking algorithm.

Our proposed vertical edge alignment algorithm is designed to improve the accuracy
of global alignment by combining sensor fusion with image processing to produce a
robust bearing measurement. Inter-frame alignment issues are the most noticeable

for users of outdoor AR applications[13] and a purely sensor based approach may

24
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suffer from jitter, latency and drift. Our implementation focuses on fixing these
issues and has been carefully designed to be both efficient and scalable on current

generation mobile hardware.

Our approach to visual alignment is conceptually different from many existing com-
puter vision techniques that essentially depend on the image component as the
ground truth[41, 58]. By relying mostly on sensor data, we minimise the amount of
image processing required for visual alignment. Our approach is validated by our
performance results; a high level performance comparison (in Section 3.3.3) of our
proposed algorithm with the ORB[38]/Lucas-Kanade Optical Flow[34-36] imple-
mentation in OpenCV|[76] shows that we are almost 100 times faster with sufficient

accuracy.

In this chapter, we discuss our proposed algorithm in detail and evaluate it’s perfor-
mance and accuracy using synthetic tests. The specific mathematical formulation
for the alignment computation is discussed in Chapter 4. The tooling used for test-
ing and evaluation is discussed in Chapter 5, with practical real world evaluation

presented in Chapter 6.

3.1 Morphological Tracking

Model-based tracking provides many opportunities for improved localisation and
registration[49] in comparison to a purely sensor based approach. But creating and
updating models for a specific environment takes considerable effort and thus such

algorithms are not suitable for general outdoor AR.

By identifying forms and shapes at run-time, pertinent structures in the world can
be mapped and used for localisation without prior knowledge of the environment.
We refer to this process as morphological tracking, which alleviates the need for a
prior model, and instead uses a lexicon of typical environmental shapes (e.g. parallel

lines, triangles, rectangles) to optimise tracking and registration tasks.

This is different from pure feature point tracking as we explicitly require that some
meaningful structure is quantified and tracked. We believe that this can be imple-
mented more efficiently than feature point tracking in general and provides a more

natural way to register content based on real world structures.
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For local alignment and registration, some kind of model-based data sets may still
be appropriate. Existing approaches are typically data heavy (e.g. point clouds,
geometric models with textures), but morphological data sets could be significantly
smaller as the data required for the abstract shapes and forms could be reduced
and compressed. For mobile applications, sending data over the wireless network is

still a significant cost.

3.1.1 Vertical Edges

Our proposed vertical edge alignment algorithm is a type of morphological tracking
algorithm. Conceptually, the extracted feature points are an approximate sparse
model of the vertical lines in the world. Because of this, we have a high degree of
correlation between similar frames, and thus they can used as input to a tracking
algorithm. Our implementation uses this statistical approximation to compute the

bearing of a frame, given at least one previous frame with a known bearing.

Users of outdoor AR are typically pointing their devices towards the horizon and
in such video frames we expect a large number of vertical edges, especially in urban
environments where there are buildings and other artificial structures. By tracking
vertical lines rather than specific feature points, we can reduce the computational
costs involved significantly. Vertical lines can be easily identified using a memory-
efficient scan line based search, unlike feature extraction algorithms that must pro-

cess large amounts of pixel data to extract good edges for tracking purposes.

In addition, vertical edges, parallel to gravity, are the best features to track when
measuring translations and rotations perpendicular to gravity. For our proposed
algorithm, a good vertical edge is one that has a large luminance gradient perpen-
dicular to gravity and ideally is part of a long continuous edge parallel to gravity.

This allows our algorithm to identify the edge easily over several frames.

3.2 Implementation

The vertical edge alignment algorithm computes the precise pixel offset between two
video frames, such that vertical edges overlap as precisely as possible. As input, it

requires two images, i1, i, the gravity vector at the time each image was captured
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FIGURE 3.2: Sample frames from data set 2013A, which features foliage and
both near and far vertical edges.

FIGURE 3.3: Sample frames from data set 2013B, which features significant
rotations and motion blur.

FIGURE 3.4: Sample frames from data set 2013C, which features several very
plain regions.

FIGURE 3.5: Sample frames from data set 2013D, which include moving people
and transparent surfaces.
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g1, g2, and the estimated translation between the two frames in pixels e, normally
computed using the gyroscope. The output sub-pixel offset includes a confidence
value which is the number of vertical features aligned correctly. We define the

alignment function as follows:

align(iy, g1,%2, 92,€) =0
U < bin(il, gl)

V< bin(ig, 92)

i < max(0,0)

j < max(0, —o)

(3.1)
(3-2)
(3.3)
0 < FISA(counts(u), counts(v),e) (3.4)
(3.5)
(3.6)
(3.7)

ar Y (i + k], —u[j +£],)
k

where @ means the average distribution of a, bin extracts vertical features into grav-
ity aligned histograms, FISA (defined in Chapter 4) computes the integral alignment
of two sequences, and counts returns an array containing the number of vertical
features within a particular histogram bin. Equation 3.7 may reject bins with few

matching features.

The resulting alignment can be combined with existing sensor fusion based esti-
mates. In our implementation, we used a weighted combination of the sensor fusion
input with the image alignment, but we mostly depend on the image alignment
(usually more than a 0.95 weighting). In the case that the confidence of the match
was low (e.g. less than 3-5 bins matched), we would defer completely to sensor
fusion. This worked sufficiently well in our testing, because the image alignment
process is typically more robust and as accurate than the fusion of the gyroscope
and magnetometer, but in difficult cases, e.g. extreme motion blur, we would defer

entirely back compass/gyroscope.

3.2.1 Device Coordinate System

The coordinate system for a phone depends on the physical sensors and the software
libraries providing the sensor data. Our algorithm is flexible enough to work with
a variety of coordinate systems, but we discuss the algorithm’s implementation in

terms of what we refer to as the device coordinate system, as shown in figure 3.6.
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FIGURE 3.6: The device frame of reference for iPhone class hardware.

All sensor data is reported in this frame of reference, but the camera frames are
rotated by 90° around the +Z axis, such that in device coordinates, image space
(0,0) = (w, h) coordinates would be at (+Y,+X) — (0,0). This is typical for most
cameras which are orientated such that the aspect ratio of the video frame matches

the aspect ratio of the screen.

3.2.2 Gravity Vector

The gravity vector is sampled at a rate of 60Hz to 120Hz, to ensure that the vector
is accurate enough for frames captured at 30Hz. For each frame, the last value for
the gravity vector is used to compute the tilt angle, as this is the most accurate and

up to date reading.

We have found that the accuracy of the gravity vector with respect to the image
plane is excellent, typically on the order of £0.1°. In addition, for many typical
outdoor AR applications, the user is unlikely to rotate the phone in a way which
significantly affects the gravity vector. This makes it an ideal sensor for input to a

computer vision algorithm.

The gravity vector can be computed by combining the accelerometer, gyroscope and
magnetometer[49]. However, modern mobile platforms include the gravity vector as

part of the inertial sensor data. This vector is usually very accurate and the sensor



Chapter 3. Fast Vertical Edge Alignment 30

fusion computation may be accelerated using hardware (e.g. the iPhone M7 motion

co-processor), so we use this vector directly rather than calculating it ourselves.

3.2.3 Tilt Calculation

The tilt is the rotation of the image frame such that gravity is aligned with the Y
axis (see Figure 3.7). The tilt is only valid for gravity vectors that are not parallel
to the camera axis (e.g. not looking directly up or down), and it’s computation is

dependant on the various coordinate systems of the device’s hardware configuration.

Y-axis (gravity)

\Tilt angle

X-axis (binning)

0 2 0 4 0 0

Number of vertical features

FIGURE 3.7: Vertical edges are extracted and binned relative to gravity.

We define a gravity local coordinate system such that gravity points down —Z and
+ X points right. This cylindrical mapping is the same as is used in other panoramic

tracking algorithms[22] and is useful for most typical outdoor AR applications!.

3.2.4 Scan Line Extraction

Using the tilt angle, we can compute a set of scan lines perpendicular to the gravity
vector (the blue lines in figure 3.7). We compute a rotated bounding box for the

image frame and use this to clip a set of horizontal scan lines. We rotate these scan

L Another option we have considered involves using globally registered scan lines radiating
around the user, such that in our gravity local coordinate Z = 0 would be the horizon. This may
increase the quality of tracking during vertical motion.
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lines back into image space to extract features. The distance between scan lines
can be specified and this influences the number of feature points extracted and the

amount of pixel data processed.

We use Bresenham’s line drawing algorithm[77] to trace these scan lines efficiently
(see Figure 3.8) and apply the Laplacian of Gaussian operator sequentially to pix-
els. The Laplacian operator approximates the 2" derivative and we extract the

coordinates of the zero crossings with approximate sub-pixel precision using a fast

mid-point calculation.

G
iy~ ey

FIGURE 3.8: Scan lines overlaid on an image rotated by 10°.

The Laplacian operator allows us to calculate the mid-points precisely even when
edges are not perfectly visible. This allows for accurate key-point detection even
when the image includes a large amount of motion blur and/or unfocused regions,
which is common for cameras with relatively small sensors and contrast based fo-

cusing.

3.2.4.1 Approximate Zero Crossings

Our original algorithm used only adjacent pixels to detect edges - if the difference
between the two pixels was above a certain threshold, we would use it for tracking.
Despite being very fast, we found this approach failed to generate many feature

points in frames with motion blur.
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To alleviate this problem, we implemented an efficient Laplacian of Gaussian (LoG)
kernel to detect approximate 2"¢ derivative zero crossings. We experimented with
a number of kernel sizes and variations, but eventually found that LoGs gave good

results both in terms of accuracy and performance:

(1] [1(z-2)]
-1 I(x—1)
LoGs(I,2) = | 4 | - | I(x) (3.8)
-1 I(z+1)
_—1_ _I(:c + 2)_

where [ is an intensity function, e.g. a sequence of pixels, and x is the offset at

which we are sampling.

In addition, we improved our feature point extraction to be approximately sub-pixel
accurate by calculating the approximate zero crossing. Traditional curve fitting
algorithms for finding the precise zero crossing are inefficient[78]. We propose a
simple mid-point calculation which computes the sub-pixel zero-crossing with at
most and error of 0.5 pixels, and does not require additional sampling or image
processing. Due to the speed of our approach, simply increasing the resolution of
the input video frames increases the accuracy of the gradient calculations; in effect,
the smaller pixel width reduces the error in our approximation significantly, and is

possible because to do so because our approximation can be implemented efficiently.

1.0 ;
— 1(x)
— I'x) : : 5 :
0.8 |"(X) .................. .................. .................. ..................

0.6k ................... .................. ................... .................. ..................
oal SO S T I T—
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0.0f———— L ) e e .

FIGURE 3.9: An typical gradient curve in I, and its 15 and 2"¢ derivatives.
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Given an intensity function for a scan line, I(z), we evaluate the Laplacian of the
Gaussian (LoG) kernel at x and z + 1. This gives us a value for the approximate 2"
derivative curve at x and x+ 1. If I”(z) is positive and I”(z + 1) is negative (or the
opposite), there is a zero-crossing point between those two samples® (an example
is shown in figure 3.9). We can compute the approximate value for = such that

I"(x) = 0 using a function midpoint:
zerocrossing(zy,xs) = 1 + (x2 — 1) * midpoint(zy, x5) (3.9)
One way to approximate the zero crossing is to take the average value of xq, zy:
midpoint(a,b) = 0.5 (3.10)

However, if the discrete sampling of I” is not equally balanced around the zero-
crossing, which we expect is the most common case, this formulation will produce
incorrect results. By modelling the curve as a straight line between the sampled
points (z, ["(z)) — (x + 1,1"(x 4+ 1)), we can compute a more accurate approxima-
tion. The following computation calculates the point where this line crosses zero as

a relative factor in the range (0.0 — 1.0):

—a

b—a

midpoint(a,b) = (3.11)

We used the 2013B data set, shown in Figure 3.3, to evaluate the average midpoint
function in equation 3.10 and the approximate midpoint function in equation 3.11.

We ran the tests once for each algorithm.

TABLE 3.1: Midpoint Calculation Accuracy

Error (°N)
Average Approximate
Data Set S.D. S.E. S.D. S.E.

2013B0 | 0.716274 0.102325 0.647186 0.0924552
2013B1 1.63702 0.187779 1.35561  0.155499
2013B2 1.31868 0.203477 1.17316  0.181022

The results in Table 3.1 show a consistent improvement of between 10 — 20%.

2We don’t consider the case that I”(z + 1) = 0 because in that situation the mid point can be
computed precisely.
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3.2.4.2 Feature Thresholding

Once a zero crossing has been detected, we calculate the local variance and compare
it to a threshold. Because the LoG function is sensitive to noise, a considerable effort
is required to filter good features. We assume that the zero crossing represents a
pixel, typically on one side of a gradient, and so we look at the variance between

the left side, the centre, and the right side.

Iz —2)+1(x—1)

- ](m)} 2 (3.12)

left(I, x) = l

2
2
right(I, x) = {I(x +2) ;— fetl) [(x)] (3.13)
variance(/,x) = left(I,x) + right(I, z) (3.14)

This function tries to analyse the local structure of the gradient. It takes a small
2 pixel sample on the left of the zero crossing, and a small 2 pixel sample on the
right of the zero crossing. It then compares these samples to the value at the zero
crossing and looks at the difference. For a smooth gradient, we’d expect a similar
value for both left and right, but for a step gradient, one side will be big and the
other side will be small. This function should compute the same value for the same
step size whether or not it is blurred or sharp - in practice it appears to do a good

job as seen in Figure 3.10.

FIGURE 3.10: Features are still detected with good accuracy despite significant
motion blur.
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We tried a number of different variance functions, and found that the sum of squared
difference gave the best accuracy and good performance. It requires no additional
sampling of the input image as we use the greyscale values computed for the Lapla-

cian. The amount of noise is tolerable in practice.

3.2.5 Feature Alignment

Our initial feature table implementation tried to extract and match vertical lines
efficiently. The green edges in Figure 3.11 show the structure that could be ex-
tracted from the feature points. However, after analysing a number of data sets, we
decided against this approach. Extracting complete edges robustly across different
lighting conditions and motion blur is difficult. Missing feature points could break
connected edges incorrectly, and matching up edges in these conditions would re-

quire a complex heuristic.

Rather than trying to discretely track connected vertical edges, we implemented
a statistical model for alignment. The proposed algorithm considers all identified
vertical features, and effectively computes a histogram (an example is given in
Figure 3.11) of this data perpendicular to the gravity vector. By aligning the

histograms, we compute the global alignment.

3.2.5.1 Feature Table Binning

After extracting the vertical edges, we distribute them into a series of bins (referred
to as a feature table), where each bin covers a fixed portion of the X axis in the
gravity local coordinate system, as shown in Figure 3.7. Sequential items in a single

bin often represent connected vertical lines in the source image.

The size of the bins is flexible; by increasing the bin width, we reduce the total
number of bins. This can improve efficiency at the cost of precision. However, if
the bin width is too small, visual noise could become problem. In practice, we've
identified that a width of 1px or 2px is ideal.

In order to reduce aliasing issues, we ensure that all feature tables have an even
number of bins. Different tilt rotations may require a different number of bins,
depending on the width of the rotated bounding box. Feature tables with an even

number of bins will always align such that the centre of rotation falls precisely
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FIGURE 3.11: A histogram of vertical edges in 2px wide bins. The three main

peaks from left to right correspond to the house, the road sign, and the tree.

Approximate vertical lines overlaid in green on the source image. Individual red
pixels mark precise feature points.
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between two bins, so our proposed algorithm ensures this quality for all feature

tables.

3.2.5.2 Table Alignment

We can align two feature tables with bin-level accuracy using the Fast Integral
Sequence Alignment algorithm, as discussed in Chapter 4. We use the number of
vertical edges in each bin to compute an integral sequence u and v for each feature
table. To compute the estimate bin offset, we compute the relative rotation between

two frames using the gyroscope and convert this into a bin offset estimate e.

Once we have calculated the bin alignment, FISA(u, v, e), we compute the precise
sub-pixel alignment of individual vertical features. For corresponding bins in each
feature table, we compute average X position in gravity local coordinates. The
difference between the average vertical feature position is computed for all corre-
sponding bins, and used to compute an average displacement in pixels. This dis-
placement is then converted back into a rotation and used as input into the sensor

fusion computation.

An alternative approach is to compare the bins in the feature table sequentially.
As the feature points are ordered vertically along the Y axis (i.e. gravity), we can
compute a precise correspondence between features with similar Y value efficiently.
We hoped that this approach would be more tolerant to noise, but instead found

that in practice it was not a systematic improvement.

When computing the relationship between two bins, ideally we would like the bins
to have a similar and significant number of feature points. This helps to reduce
noise. Our proposed algorithm therefore only aligns individual bins that have a

fixed minimum number of vertical features.

In practice, this isolates noise from sequential vertical lines, but in difficult tracking
situations (e.g. significant motion blur), it might be the best match available, so
fine tuning is required. Our confidence of a good match is therefore directly related
to the number of bins we could use to compute the alignment. If we have less than
a moderate number of corresponding bins, our hybrid tracking algorithm reverts

back to a purely sensor based approach.
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3.3 Evaluation

We evaluate our algorithm on an iPhone 5 running iOS 7, using the stop sign image
from the metaio data set[69], as shown in Figure 3.8. We tested a number of different
scenarios to examine the performance of the proposed algorithm and its tolerance

to erroneous input.

We also took this opportunity to compare our approach with an existing feature

extraction and alignment algorithm to assess the viability of our implementation.

3.3.1 Rotational Alignment

We modified the sample image so that it could be systematically rotated, and gen-
erated rotations in 1° increments from —20° to +20° using a script. We used the
0° rotation as the basis and calculated the offset of every other rotation using our
proposed algorithm. As the source images only have rotations applied, the transla-
tion is expected to be 0 in all cases. As such, the translation estimate supplied to

the vertical feature alignment algorithm was set to 0 for these tests.

We varied the distance between scan lines, which directly affects the number of
feature points detected, to look at the effect on performance and accuracy. The
scan lines are distributed vertically every dy pixels. We give the time for feature ex-
traction and alignment processing separately, and the alignment error for all images
from —20° to +20°.

TABLE 3.2: Rotation Performance and Accuracy.

Output Error (px)
dy (px) | Features Alignment Mean S.D. S.E.
) 12.13ms 303.9ps -0.0026 0.019 0.003
10 6.29ms 143.3ps -0.0045 0.028 0.0044
15 4.24ms 109.91s -0.0082  0.04 0.0062
20 3.27ms 119.5ps -0.023  0.046 0.0071
25 2.57ms 125.81s -0.0099 0.066  0.01
30 2.08ms 126.5ps 0.16 0.64 0.099

The results in Table 3.2 show that there is a good balance between performance
and accuracy when 10 <= dy <= 20. The number of samples that matched up
is dependant on the source image, but we want to ensure a reasonable number of

good quality matches. As dy is increased, the accuracy is diminished, as expected.
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3.3.2 Rotation Noise

Under normal circumstances it would be typical to have a small amount of error
in the measured rotation from the gyroscope. We simulate this by adding gaussian
noise to the tilt estimate and passing this incorrect data into the alignment algo-
rithm. We fix dy = 10 and the bin size is 2px for this evaluation, and use the same

data set as described in Section 3.3.1.

TABLE 3.3: Rotation with noise.

Input Error Output Error (px)
S.D. Samples Mean S.D. S.E.
0.0° 49.2 -0.0049 0.045 0.00071
0.2° 48.3 0.0025 0.044 0.00069
0.4° 46.6 0.013  0.12 0.0019
0.6° 44.8 0.012  0.29 0.0045
0.8° 43.4 -0.032  0.47  0.0073
1.0° 42.3 -0.077  0.58  0.0091

From the results in Table 3.3, we can see that despite significant error in the tilt,
the standard deviation is about half a pixel of error. This is fairly reasonable, as
the alignment of the feature tables will become progressively worse, proportional to
the amount of error in the tilt angle. We also note that the number of matching
samples was reduced too, indicating a reduced confidence of a good match, which

is also expected.

3.3.3 Translation Comparison

We compared our proposed algorithm with an alignment algorithm implemented
using optical flow. We were primarily interested in the efficiency of our approach
in comparison to existing feature point extraction and correspondence algorithms.
We generated a set of test images with fixed offsets from -20px to +20px in 5Hpx

increments, and processed them using both implementations.

The results in Table 3.4 show that our proposed algorithm is significantly faster in
practice than existing feature extraction and optical flow alignment algorithms. In
particular, ORB is considered to be a reasonably fast feature extraction algorithm,
and yet it performed relatively poorly in comparison. Lukas-Kanade optical flow is

generally considered a robust and efficient method for calculating the relative motion
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TABLE 3.4: Image Alignment Performance Comparison on iPhone 5

ORB/LK Optical Flow | Proposed Implementation
X Offset (px) | Features Alignment | Features Alignment
-20 112ms 309ms 3.84ms 55.0ps
-10 107ms 318ms 3.62ms 54.21s
0 112ms 310ms 3.60ms 55.1us
10 107ms 314ms 3.77ms 54.61s
20 108ms 322ms 3.60ms 53.9ps
Error: £0.00005px Error: £0.05px

of feature points. Our results confirmed that it produces highly accurate alignment,
but at a significant cost. In addition, while this implementation of optical flow has
a fixed window size of 21px, our algorithm has no such limitation, provided the

estimate is reasonable.

3.3.4 Translation Noise

We also look at how a poor estimate affects the quality of the computed alignment.
This is particularly important as some of the biggest alignment issues are caused
by errors in the gyroscope. The estimate is used directly as an input into the FISA
algorithm and thus it is critical that we find the correct offset even if the input
estimate contains significant error. We fix dy = 10 and the bin size is 2px for this

evaluation, and use the same data set as described in Section 3.3.3.

TABLE 3.5: Translation with noise.

Input Error Output Error (px)
S.D. Samples Mean S.D. S.E.
Opx 58.1 0.32 0.36 0.012
dpX 58.1 0.32 0.36 0.012
10px 58.1 0.32 0.36 0.012
15px 58.1 0.32 0.36 0.012
20px 58.1 0.32 0.36 0.012

From the results in Table 3.5, we can see that despite significant error in the es-
timated translation, the alignment is still computed accurately. The results are

identical each time which indicates that all features were matched in the same way.
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3.4 Summary

We have described an efficient vertical edge alignment algorithm that combines both
camera and sensor data for efficient operation. We have shown that it has excellent
performance on current generation mobile devices, and that it is tolerant to both

sensor and visual noise.

Next, we discuss the Fast Integral Sequence Alignment algorithm which was used

to implement our tracking algorithm.
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Fast Integral Sequence Alignment

Finding the correspondence between two sequences of numbers can help us align
images. We looked at statistical methods for computing the correlations between
two sequences|79], and in particular, how this has been applied to computer vision
problems in the past[80]. As a result, we developed a correlation function with a
formulation that allows for efficient implementation, and we show how it performs
directly on the iPhone 5.

The Fast Integral Sequence Alignment is essentially a peak matching algorithm. It
works by looking at “peaks” in the given sequences and measuring how they match
up. When the sequences are matching up sufficiently well with a given offset,
such that the error between individual corresponding peaks is low, we say that the

sequences are aligned. As an example, here, u and v are aligned with an offset of 3:

u=1[3,7,8,7,6,0,0,7,5,3] (4.1)
v=1[7,7,0,0,7,5,4,0,1,5] (4.2)

The definition is similar in principle to convolution, and practically speaking, the
result is similar to FF'T based image alignment[81]. However, FFT based approaches
are generally not fast for small data sets, such as the ones we are dealing with,

despite having a better computational efficiency[82].

In this chapter, we discuss the precise mathematical definition this function, which

was used in our proposed algorithm as discussed in Chapter 3.

42
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4.1 Definition

Given two sequences of positive integers, u and v, of length n, the following sum of

squared errors correlation:

[e.o]

(wsv)(k) = Y [u(i) — v(i — k)]” (4.3)
should yield minima when the two arrays u and v are aligned. In cases where u(1)
or v(i — k) are undefined, the difference is 0. For a general pair of sequences, there
is the potential that there are multiple values of k that produce good alignments,

especially in the case that the arrays contain noise.

Error calculations are inherently based on the size of the overlap between u and v.
Therefore ideally, —7/2 < k < n/2. Our confidence of a good match when k is outside
these bounds is reduced, as the the minima will naturally be lower as less items

overlap?.

We adapt this function to include an initial estimation parameter e:
(wrv)(ke) = (k—e) + > [u(i) —v(i — k)] (4.4)

where e is assumed to be close to the actual value of k. The exponent F in the
bias should be adjusted so that it approximates a gaussian distribution on the same
magnitude as the actual error. This can be pre-selected or computed dynamically;

in our implementation we use 2 for efficiency.

This estimation bias serves two important purposes, it reduces the ambiguity in
the case that there are multiple values of k£ that give a good alignment, and it
provides several opportunities to improve the performance of the implementation.
In practice, the estimation bias is how we leverage the sensor data - the more

accurate the initial estimate, the more efficient and accurate the result.

'The mean squared error is another statistical formulation which effectively normalises the
error by the size of the overlap, but makes our approach hard to optimise and doesn’t make a
significant different in real usage.
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4.1.1 Reducing Ambiguity

In the case that there are multiple minima, we need some way to distinguish between
them. The initial estimate bias solves this by increasing the error for solutions

further away from e. For example in the following,

u=10,5,0,4,0,5,0,4,0,5] (4.5)
v=1[4,0,5,0,4,0,5,0,5,0] (4.6)
an offset of kK = —3 and £ = +1 give the same minima 0. If we estimate that the

alignment e = 2, we reduce this to a single minima at k = 1.

In the very rare case that we still have ambiguity, we can often pick the minima

closest to e. However, in practical data sets, this event has never been observed.

4.1.2 Improving Performance

We can avoid evaluating (u * v)(k,e) for values of k that are likely to give high
error. We use an exponential initial error based on the distance of k — e and if we
incrementally evaluate (u * v)(k,e), we can ignore values of k that are unlikely to

yield good results.

The naive implementation has a best case O(kn) because for all valid k, we must
evaluate n multiplications and select the minimum. Leveraging the estimation, we

can avoid computing k that are bigger than the currently found minimum.

We can improve the linear implementation by incrementally evaluating for £k ex-
panding outwards from e, avoiding computations for k that are bigger than the

currently found minimum.

Alternatively, we could use a min-heap and incrementally evaluate the summation
over i to track the current minima for a given offset k. In particular, it is common
to find a good value for k within a few iterations. By specially crafting the heap
siftdown function[83] we can leverage this condition to minimise the amount of

cache thrashing.

Finally, in order to maximise the benefit of the heap, we should avoid evaluating ¢

sequentially. Doing so will often compute many uninteresting cases where [u(i) —
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v(i — k)] is relatively small and cause the heap to reorganise itself repeatedly.
In contrast, the biggest peaks will often lead to the biggest errors when data is
misaligned. By evaluating these first, we push unlikely & to the bottom of the heap,
and we reduce the chance that we continue to evaluate incorrect alignments. We
compute the peaks of u such that u[peaks[i]] >= u[peaks[i + 1]] and use this to

incrementally evaluate [u(peaks|i]) — v(peaksli] — k)]*.

4.2 Implementation

We define the function FISA, Fast Integral Sequence Alignment, for arrays u and v
of length n as follows:
n/2

FISA(u,v,e) = kznirl/ (uxv)(k,e) (4.7)

This function, in practice, returns a (k, error) pair such that error is minimised.
The range of k can be adjusted depending on the data sets we are dealing with.
We implement this function in C+411 with two main variations, a linear search
method that computes for all £ but is bounded by the worst error found thus far,

and a heap method that incrementally updates based on the lowest error.

4.3 Evaluation

We evaluated the above algorithm (see Appendix A for an overview of the imple-
mentation) on an iPhone 5 running iOS 7, compiled with clang++-3.3 -03. We
vary the size of n using randomly generated sequences with values between 0 and
50. We add several large values in the data set between 0 and 250 and include up
to 10% noise in all values. We compare 4 variations of the algorithm, including
a linear search from left to right, the linear search expanding outwards from the
initial estimate, the heap search with incremental evaluation and the heap search

with peak-order evaluation. See Table 4.1 for the results.

For small problems n < 256, the outward expanding linear scan is the most efficient

choice. This is likely due to the fact that it uses the .1 cache more effectively than
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TABLE 4.1: FISA Performance Results.

Linear (ps) Heap (ps)

n | Left-Right Outward Left-Right Peaks

8 0.552 0.484 3.628 6.629
16 1.716 1.357 10.721 10.489
32 4.914 2.878 22.536 20.126
64 16.560 9.496 46.687 34.780
128 56.323 32.793 94.913 60.527
256 176.742 112.915 201.484 103.439
512 733.457 430.844 492.797 205.429
1024 2987.51 1713.51 1253.59 365.713

the heap implementation which copies a significant amount of data during siftup

and siftdown operations.

The cost of the initial sort in the heap+peaks implementation is moderate but pays

off significantly for n >= 512. For n = 1024, it is almost 35 times faster.

These results suggest that for a general algorithm, a hybrid between the two al-
gorithms would be appropriate, however in our case we are mostly concerned with

n < 256 so we have chosen to use the linear+outward search.

4.4 Summary

We have formally defined a new mathematical method for computing the offset
between two integral sequences. We described four implementations and analysed

the performance characteristics on current consumer level hardware.

Next, we discuss the Transform Flow toolkit which was used to develop and test

our proposed Vertical Edge Alignment algorithm.
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Transform Flow Framework

Evaluating and comparing algorithms is an important part of quality research. The
ability to compare different approaches with the same data sets is critical to the
development of improved methods|70]. This is also true for mobile AR, where many
tracking algorithms are developed specifically within the constraints of a particular

hardware configuration and testing methodology.

Ideally, sensor and visual data, as outlined in Figure 1.2, is captured from a variety
of mobile devices in such a way that it can be repeatedly replayed. Algorithms
can be critically analysed, frame by frame, to isolate edge cases and bugs in a
controlled environment; test cases can be developed and run automatically to check
for regressions. In addition, with the right design, both offline and online processing
of input data should be possible, so that algorithms can be seamlessly deployed on

real hardware for user evaluation and application development.

An open source platform that facilitates the analysis of new and existing algorithms
would allow researchers to develop and test new ideas easily. Existing code can be
reused, which typically reduces the challenges and risks associated with software
development. Such a platform could also serve as a useful educational tool for
students wanting to learn about different tracking algorithms and how they are

implemented.

In this chapter, we discuss the various components that make up the Transform
Flow Framework, and how they have been used to support both the design and
the evaluation of the the Fast Vertical Edge Alignment algorithm as discussed in
Chapter 3 and Chapter 6 respectively.

47
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5.1 Transform Flow Framework

We developed the Transform Flow Framework!. It includes data capture applica-
tions for iOS and Android, data visualisation and analysis tools, an abstract mo-
tion model interface for implementing algorithms, several sample implementations
of different tracking algorithms, a browser application for running these tracking
algorithms on supported mobile devices, and several data sets which we developed

for testing and evaluation.

We have decided to publish the code, documentation, and data sets as completely
unencumbered open source, under the MIT License, in the hopes that its availability
will reduce the barriers for other researchers entering this field. In addition, we be-
lieve that the structure of our contribution can encourage a systematic approach to
the development of new algorithms. The existing code base includes many practical
examples, and over time we hope that our tooling can serve as a useful platform for

a wide variety of tracking implementations.

This is an ongoing project and we realise that it may not fit everyone’s requirements.
We have specifically chosen online systems that support collaboration, so as to
maximise the value of the toolkit - not just for our needs - but for the needs of
this field in general. Transform Flow is an innovative platform that encourages

collaborative research, development and education in the area of mobile AR.

5.2 Motion Models

A motion model is an abstract interface (see Appendix B) that wraps the imple-
mentation of a specific tracking algorithm. The set of inputs and outputs are well
defined, and relate specifically to the tracking task being performed. Multiple algo-
rithms can be implemented with the same programming interface, which allows the
visualisation and browser applications to interact with different implementations

without significant changes.

We specifically designed our motion model abstraction around the hardware capa-
bilities of modern mobile devices and the types of data required for accurate global

outdoor AR tracking. Specific types of motion models may require additional inputs

! Available online: https://github.com/HITLabNZ/transform-flow
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or outputs. For local image based tracking, we may output a camera pose relative
to a local frame of reference. Other motion models might require direct access to
the magnetometer. This is supported by subclassing and modifying the source code

appropriately.

To serve as an example, we include two motion models in the current distribution.
These motion models can be compiled and used both in the visualisation tool and

in the browser application:

5.2.1 Basic Sensor Motion Model

The included basic sensor motion model implements a sensor fusion based track-
ing algorithm. It combines the compass and gyroscope using a low-pass filter for
improved bearing calculations. It tracks relative changes in rotation around the

gravity axis, and exposes these as an output.

The bearing is typically measured as the angle between a device coordinate frame
and true north. The device usually defines a fixed axis, by default on iOS devices it
is +Y. Because of this, rotations around the camera axis -Z may cause changes in
the bearing (see Figure 3.6). Latency in sensor fusion can create significant tracking
artefacts, such as temporary instability in the bearing output. To compensate for
this, we project the bearing into a global coordinate system and then measure
the rotation of the camera axis relative to North. This reprojection ensures that

rotations around the camera axis do not elicit changes in bearing.

In order to initialise the basic sensor motion model, at least one motion update
is required to establish a gravity vector, and one heading update to establish a
global bearing. After that point, gyroscope updates are combined with heading,
and along with the gravity vector and GPS, this provides a fairly robust global

frame of reference.

5.2.2 Hybrid Motion Model

The hybrid motion model derives from the basic sensor motion model and incorpo-
rates image processing into the bearing calculation. It uses the approach discussed
in Chapter 3 and Chapter 4, and uses the rotation about gravity as the estimate

for image processing. In the case of a visual tracking failure, sensor fusion provides
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continuity but typically at a decreased level of accuracy. This ensures a robust

output even in challenging scenarios.

5.3 Data Capture

We created a mobile data acquisition system[84] to capture sensor data and video
frames. This application was developed for iOS using Objective-C. The rate at which
sensor data and video frames are captured is independent, and can be customised at
compile time. All data is saved in a CSV (comma separated values) formatted log
file, including video frames that reference external PNG (portable network graphics)

image files in the same directory.

Sensor data is captured using Apple’s CoreLocation and CoreMotion frameworks.
CoreLocation provides WGS84 latitude, longitude, altitude and bearing, while Core-
Motion provides gravity, linear acceleration rotation rate and magnetic flux. The
position and bearing typically have quite a high latency, while the motion data is

usually captured at 30Hz.

Video frames are captured using AVFoundation that provides access to the camera
at a variety of resolutions. We record the captured image as interpolated RGB,
which is universally supported across all devices and a convenient format for further
processing. We typically capture at 480 x 360 at 10Hz - higher frame rates generate

huge amounts of data and can be harder to analyse.

Phone specific data including the device name and hardware identification are
recorded as one of the first entries in the log file. This can be used for hardware or

device specific calibration files.

In order to support global tracking algorithms, when recording is triggered, the
current position and bearing are written to the log file if possible. This allows at
least one global position and bearing entry to exist before frame data and motion

data, which is typically required for initialisation.

The tool includes a real-time visualisation of sensor measurements. This allows for
a greater understanding of the effects that the physical device motion is having
on the sensor data. It can be instructive to check the gyroscope, accelerometer or
other sensors while manipulating the device. Per-device issues including calibration

problems and drift can be assessed quickly and isolated.
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FI1GURE 5.1: The data capture application running on an iPhone 5.
5.3.1 Android Support

An existing Android data capture tool, developed by another researcher, Alexander
Pacha, has been modified and contributed to the Transform Flow project[85]. It
can output Transform Flow style data sets from a wide range of Android devices.
It has not yet been extensively tested, but supporting a wide range of hardware can
be challenging. The coordinate systems for inertial sensors may not be consistent,
the field of view for the camera may not be correct, the sensor output may be more
or less accurate than generally expected, and the latency in sensor measurements
might be significantly different from the norm. Manufacturer and platform specific

implementations of the sensor fusion algorithms may also produce different results.

Dealing with these issues is critical for wide-spread deployment on consumer grade
hardware. The Android data capture tool is the first step to understanding and
solving these problems, and this process will present many good opportunity to

further refine and collaborate on the Transform Flow library:.

5.3.2 Data Set Format

Data sets are recorded using the on-screen switch. This information is saved into the
phone’s memory and can be downloaded to a computer using the Xcode organiser.
The data sets themselves were designed to be simple to work with and flexible

enough to support future requirements.

We use CSV as it is a simple format for structured data and can be logged easily;

a sample is shown in Figure 5.2. We uniquely identify each row in the log using an
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index starting from 1, a function name (e.g. “Gyroscope”) and a timestamp. The
function name relates to the structure of the remaining arguments in the row and
is used for processing rows into useful data structures (refer to Appendix C for a

more detailed specification).

1, Location, 349238.3985, -43.521526, 172.582418, 21.4788,
10.0000, 16.0000

2, Heading, 349238.5007, 80.6878, 104.2185

3, Gyroscope, 349239.1022, -0.034565, -0.038651, -0.003393

4, Accelerometer, 349239.1022, 0.000856, -0.008263, -0.015212

5, Gravity, 349239.1022, -0.000902, -0.998390, -0.056718

6, Motion, 349239.1022

7, Frame, 349239.1090, O

FIGURE 5.2: A few lines from a data set log file.

It is easy to modify the data capture tool to add additional data structure records,
e.g. adding battery status, GPS course, current waypoint, or other parameters that
may be of interest. This allows for the data capture application to be extended
with new capabilities as required for specific research areas, while retaining core

functionality and compatibility with existing processing/visualisation tools.

Nested data can be supported using sequential relationships. For ease of readabil-
ity, gyroscope, accelerometer and gravity vectors are recorded separately, but are
immediately followed by a motion entry with the same timestamp, which ties them
together into one logical unit for processing. In the future, additional motion spe-
cific fields could be added, e.g. magnetometer measurements, without modifying

any other structures.

5.4 Visualisation

We have developed a desktop application[86], shown in Figure 5.3, for viewing data
sets captured using the mobile data acquisition tool. This application is written in
C++11 and uses OpenGL for rendering. It currently compiles for Mac OS X and

Linux support is almost complete.

Our current implementation assumes that the user is interested in visualising data
within a global frame of reference, with position defined by (latitude, longitude,

altitude) and rotation defined by (bearing, gravity). To systematically capture this
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data, we define an abstract motion model that is used to process incoming sensor

data and image frames.

The camera pose is computed in two steps, a quaternion rotation based on the
bearing and gravity information, and a displacement based on the latitude and
longitude. We use East, North, Up (ENU, maps to XYZ) Cartesian coordinates

which are intuitive and practical for the small data sets we are usually evaluating.

The input data set, combined with a motion model, produces an immutable per-
frame globally registered camera pose. This sequence of frames can then be visu-
alised and analysed without further motion processing. In the case that a motion
model requires several sensor updates before it can be initialised reliably, the visu-

alisation will start at the first frame after the localisation becomes valid.
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FIGURE 5.3: The Transform Flow Visualisation application rendering 50 com-
bined frames in a 3D environment. The makers have been added by different
feature detection algorithms.

Displaying frames in a 3D environment is challenging because a camera frame is a
planar projection of a typically non-planar environment. Without depth information

it is impossible to accurately reproduce the actual 3D structure. To work around
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this problem, the visualisation tool uses planar projections based on the camera’s
field of view and an arbitrary scale factor. Frames can then be rendered in a 3D
environment and explored using an arbitrary view position. Pure rotations result

in the easiest to interpret visualisation as there is no change in planar alignment.

5.4.1 Analysis

Visual inspection of data sets in a 3D frame of reference (see Figure 5.4) provides a
good high level overview of algorithm behaviour and exposes tracking errors includ-
ing incorrect coordinate frames (e.g. rotation on the wrong axis), sensor integration

issues (e.g. large jumps between frames) or bad feature point detection.

FIGURE 5.4: A 360° panoramic data set, with the first frame visible, in the
Transform Flow Visualisation tool. The user can interactively navigate through
individual frames and view their associated metadata.

Each frame can have a set of debug notes and visual markers associated with it.
These are essentially debug messages from the motion model. Per-frame logging is
a useful debugging tool and provides specific feedback about how the motion model
was working internally. Per-frame feature points show a structured analysis of the
image data and allow a user analyse the details of individual points by selecting

them visually.



Chapter 5. Transform Flow Framework 95

5.4.2 Evaluation

Systematic evaluation is an important process for ascribing a metric to the quality
of a tracking algorithm without manual intervention. It allows for the critical and
consistent comparison of different algorithms over a wide variety of data sets and

for the comparison of the same algorithm as it is being developed and tweaked.

Transform Flow includes support for tracking points, which are spatial markers
registered against pixel coordinates for a specific image frame in a specific data
set. Tracking points are stored in a separate CSV file inside the data set, and
the visualisation tool provides some features to assist with the generation of this
data. Tracking points which represent the same visual feature are grouped by a
tracking index number, and these form the basic data structure required for further

processing.

We have implemented a method to evaluate the accuracy of per-frame bearing. We
use groups of static tracking points (such as in data set 2013D0 shown in Figure 5.5)
which are generally fixed physical features, and compute the 3D position of these
points using the camera pose computed by the tracking algorithm. We project these
points on the plane Z = 0 and compute the bearing. With purely rotational motion,
the relative bearing should not change, which is our ground truth. We compute the
bearing of each tracking point and measure the average, standard deviation and

standard error. The stability of this metric reflects the quality of the tracking

algorithm.

F1GURE 5.5: The 2013DO0 tracking point shown in four frames.

In the future, we would like to add a projective based evaluation technique[87].
Given the same feature point in multiple frames, for all frames which contain that
feature point, the projection of feature point into a 3D environment should converge

to a single 3D position. The distribution of this convergence is directly related to the
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quality of the tracking algorithm, and similarly to the bearing evaluation, provides

us with a metric to compare different approaches systematically.

5.4.3 Sample Data Sets

In order to facilitate consistent testing and evaluation, and additionally provide sam-
ple data for the visualisation tool, 14 data sets have been published and document-
ed[88]. These data sets are captured using the published iOS capture tool, and
include a full range of sensor measurements. We hope that the publication of these
data sets will stimulate others to do the same and that over time a large corpus of

sample data can be built up to support a wide range of evaluation techniques.

5.5 Deployment

We have developed an iOS application[89] that can be used to run algorithms devel-
oped using the Transform Flow motion model abstraction. It uses a similar setup
to the capture tool, but rather than logging the events, it applies them directly to
a motion model. The AR visualisation is then rendered using the calculated frame

of reference.

The application itself consists of two parts, a map view and an AR browser (see
Figure 5.7).

The map view shows the user position and nearby globally registered points of
interest. It provides an overview of where content is located and how it relates to
local buildings and geography. The built in map view overlays the GPS accuracy

and gives a useful indication as to the tracking quality.

The browser can display points of interest using 3D content (via Wavefront OBJ
files) and 2D billboards (constructed directly from UIView instances), which are
rendered on top of a real-time video stream using OpenGLES. The visualisation
includes a planar grid which is useful for understanding the practical tracking qual-
ity, e.g. jitter, rotations. The implementation itself is multi-threaded, and uses
Grand Central Dispatch to offload the rendering, camera frame capture and motion
model computations to separate CPU cores so that the main user interface remains

responsive.
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FIGURE 5.6: The Transform Flow Browser, showing the top down map view,
with a single marker.

Browser

FIGURE 5.7: The Transform Flow Browser, showing a 3D model on top of The
HIT Lab NZ.

Dealing with a wide variety of camera and screen configurations is not trivial.
Specifically, different cameras have different intrinsic properties, the most important
being the field of view. We estimate this parameter as 55° which is, in practice,
+2° for commonly used iOS devices. Device specific calibrations might be useful
in a research setting but would be cumbersome for end user applications. Ideally,
a per-device database of camera intrinsic properties would allow for wide spread

deployment with acceptable accuracy, or for unknown devices, some kind of online

calibration procedure.



Chapter 5. Transform Flow Framework 58

5.5.1 Android Support

The browser application is very much platform specific code as it involves custom
UI, rendering and other functionality. In addition, custom code is required for
interacting with the hardware (e.g. cameras, sensors). This means that there is
a moderate amount of per-platform work required. However, the Transform Flow
library and it’s supporting libraries all support cross-platform compilation. Because
of that, the core tracking functionality need not be reimplemented for different

platforms.

Several researchers are presently working on adapting the existing AndroidAR
browser to support Transform Flow via the Android NDK. We hope this work

progresses and allows us to support a wide range of devices.

5.6 Source Code

One of the important goals of this project was to create something that would
facilitate collaboration and further research. As such, the data capture, analysis and
browser tools have been released under the MIT license on GitHub. The MIT license
allows developers to use the source code free of charge with very few limitations (e.g.

commercial use is acceptable).

HITLabNZ / transform-flow GSUnwatch ~ 2 4 Star 0 [*Fork ©

Transform Flow is a visualisation tool for mobile outdoor augmented reality data sets.
€2 Code

54 1 0 1
e © s+
Bl ¥ oench master - | transform-flow / Pull Requests

Fixed :run dependencies. Wiki

7 loquatix latest commit 9818a3db6b
Transform Flow.xcodeproj Updated project 1o build using teapot. Commandiine now useful. 10 days ago Pulse
data Add sample data set 10 days ago Graphs
ideas nvestigating the effect of noise on the peaks alignment algorithm 15 days ago Network
opt Copied code from ARBrowser-VideoStream. Minor updates 2 days ago
source Add TranformFlow-Visualisation a day ago Settings

teapot Add default xcconfig files unil bugs in teapot are resolved 11 hours ago
HTTPS

test Updated project to build using teapot. Commandiine now useful. 10 days ago
E README.md Added information about the stream capturing tools. 2daysago = Youcan clone with HTTPS, SSH,
Subversion, and other methods.
B teapotab Fixed :run dependencies. 11 hours ago
[@ Clone in Desktop.

E2 README.md &> Download ZIP

F1GURE 5.8: The Transform Flow repository on GitHub.

GitHub provides a fantastic environment based on Git[90] where other researchers

can easily fork the source code and contribute back their modifications. We hope to
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integrate new motion models and evaluation methodologies as they are developed,
so that our project can serve as a useful tool for comparative analysis for future

work.

5.6.1 Building

Existing research[91] and practical experience has shown that build related chal-

lenges can be a major source of problems:

o Choosing appropriate compilers and SDKs for the target platform.
o Selecting compiler flags in a way that is consistent across all systems.

o Specifying the directories where headers and libraries from other required

software packages are located.
« Generating code and copying resources, e.g. shaders and sample data.

 Specifying the location(s) to produce object code, libraries, executables and

install packages.

Our project spans approximately 30 individual libraries of various scale, as outlined
in Section 5.7. We are required to build many of these packages in different environ-
ments, e.g. Mac, Linux, iOS, Android, with different compilers and different system
configurations. In addition, we wish to encourage collaboration, so the process of
building, running and extending the software should be as easy as possible, despite

the inherent incompatibilities in the supported platforms.

Originally we were using CMake[92] to build several libraries. As the project got
larger and included more dependencies, the amount of CMake configuration required
became unmaintainable (1204 lines of configuration per logical package spread
over 6 configuration files by default[93]). In addition, CMake doesn’t provide any
facilities for pulling in versioned dependencies which means that users must install
these manually for all required platforms, which is generally a very complex and

CITor-prone process.

We have noticed that as you increase the cost of building and managing software
(i.e. non-code related work, external dependencies, build systems), you proportion-

ally increase the tendency for developers to combine disparate functionality (i.e.
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threading, networking, image processing, audio) into a single project. By doing
so, the ratio of productive code to unproductive configuration is improved which
generally reduces the burden of developing and maintaining the library. We refer

to this as monolithic project feature creep.

The problem with this approach is that in many cases, you may only require a small

subset of the total functionality. Large projects have many drawbacks:

e Scope of project is beyond any single person to manage and hard for new

developers to comprehend.
o Compatibility and support across multiple platforms and releases is difficult.

« All or nothing approach to individual components, no way to upgrade/version

only specific parts.

» External dependencies left up to the user or included directly, integration and

build is complex.

To mitigate these issues somewhat, projects often include complex configuration
systems that in our experience, frequently break on cross-platform builds or unan-
ticipated configurations (this was a major source of problems earlier in the research).
The end result is that it is practically impossible to use these large libraries of code

while still ensuring that the system is easy to build and extend.

There are many good examples of “large projects”. OpenCV includes in it’s own
source tree, versioned copies of libjpeg, libpng, 1ibtiff, z1ib, jasper, openexr,
and ffmpeg. Up until recently, it was impossible to build some parts of OpenCV for
iOS. This is not uncommon: boost includes includes over 50 separate components
in a single package, and up until recently did not support iOS or Android without
custom modifications to the source tree and build system. Because the library
follows a monolithic release schedule, fixes were not available for a significant period

of time.

We believe that small modular packages are better: they integrate with existing
projects more easily, they are simpler to understand and debug, they are less daunt-
ing to fork and modify, they can be tested in isolation, they minimise the amount
of unnecessary code in a project, and most importantly they make it possible for

designs to evolve in a localised fashion[94]. However, there are no existing systems
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which are generally designed to support modular C++ code where cross-platform

builds are the norm, so we developed one.

5.6.1.1 Project Growth

The Transform Flow Visualisation application was developed throughout the du-
ration of the research, and was not split apart into separate components until we
were required to do so to support the browser application. Over the course of the
research, it gained many new features, including tracking algorithms, particle ren-
dering, image billboarding, sensor processing, and so on. This is a classic example
of monolithic project feature creep, and made it impossible to port the software

directly to iOS.

Only once the core tracking and sensor fusion processing algorithms were extracted
into a separate library and isolated from the concerns of the visualisation tool, was
it possible to build and deploy our algorithms on mobile devices. We actually always
intended to split the project up like this, but lacked the specific tools to support
this development methodology, which is why we developed Teapot.

5.6.1.2 Teapot

Teapot[95] is decentralised package manager and build tool that can fetch and com-
pile versioned dependencies for multiple target platforms. It includes minimal task
specific code and instead delegates this to external packages where possible. The
inspiration for this tool came from RubyGems[96], which is essentially a platform-
independent package management system with very minimal per-package overhead
(a single file, about 20 lines). Similarly, Teapot requires only a single file per
project by default, which typically includes a list of external dependencies, and a

set of targets which can be built.

Teapot is used for all parts of Transform Flow and can build any and all parts
of Transform Flow across all supported platforms with minimal configuration by
the user. It uses a package metaphor as a central structure for managing the
build process, where individual packages are considered immutable units of source
code. Abstract dependencies, i.e. dependencies which can be satisfied by more than
one package, are the primary method to customise the build process. As shown

in Section 5.7.2, Teapot can dynamically reconfigure the build depending on the
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specific requirements of the user and platform, while maintaining the consistency

guarantees afforded by individual packages.

5.6.2 Unit Testing

Ensuring that changes and modifications don’t introduce problems with existing
code is a useful requirement for collaborative projects. GitHub, when combined
with Travis-CI[97], provides immediate feedback when users make source code sub-

missions (pull requests) on public projects.

The build failed.

Repository HITLabNZ/transform-flow
Build #1  https:/travis-ci.org/HITLabNZ/transform-flow/builds/11141380
Changeset https//github.com/HITLabNZAransform-flow/compare/effd6863b34b...055eca659af7

Commit 055eca6 (master)
Message Better per-frame bearing logging.
Author Samuel Williams
Duration 13 seconds

irc.freenode.net

Bbluebox private repositories?

FIGURE 5.9: An email notification from Travis-CI due to a build issue.

Many component parts of the Transform Flow toolkit have unit tests, which means
that any time the code is changed, either directly in the repository on GitHub,
or as a pull request from another user, the unit tests will be run and the results
reported appropriately. This helps to ensure that new users making contributions
can feel confident that they are not breaking existing code and supports existing

maintainers who might be refactoring or adding new features.

In addition, unit tests also serve to document various parts of the system and how
to use them. Functional tests provide useful examples of specific functionality and
integration tests show how to combine different parts of a system. This allows new
users to become familiar with the code quickly and easily, and serves as a working

example of the available functionality and how it should be used.
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5.7 Software Overview

The Transform Flow Evaluation and Visualisation Toolkit is a collection of libraries,
data sets and applications to support the development of mobile AR tracking and
applications. It includes C++, Objective-C and Java code, spread over several

repositories:

e Transform Flow

https://github.com/HITLabNZ/transform-flow

o Transform Flow Capture for iOS

https://github.com/HITLabNZ/transform-flow-capture-ios

o Transform Flow Capture for Android

https://github.com/HITLabNZ/transform-flow-capture-android

e Transform Flow Data Sets

https://github.com/HITLabNZ/transform-flow-data

e Transform Flow Visualisation

https://github.com/HITLabNZ/transform-flow-visualisation

e Transform Flow Browser for iOS

https://github.com/HITLabNZ/transform-flow-browser-ios

¢ Transform Flow Browser for Android

https://github.com/HITLabNZ/transform-flow-browser-android

5.7.1 Compatibility

TABLE 5.1: Transform Flow Compatibility.

Component iOS Android Mac Linux
Core Libraries Supported Supported Supported Supported
Capture Tool Supported  90% Done N/A N/A
Visualisation Tool N/A N/A Supported In Progress
Browser Supported 10% Done N/A N/A



https://github.com/HITLabNZ/transform-flow
https://github.com/HITLabNZ/transform-flow-capture-ios
https://github.com/HITLabNZ/transform-flow-capture-android
https://github.com/HITLabNZ/transform-flow-data
https://github.com/HITLabNZ/transform-flow-visualisation
https://github.com/HITLabNZ/transform-flow-browser-ios
https://github.com/HITLabNZ/transform-flow-browser-android

Chapter 5. Transform Flow Framework

5.7.2 Transform Flow Structure

The Transform Flow Visualisation software includes many modules. These modules

implement specific areas, such as the core algorithms, the visualisation primitives,

image loading, etc. Depending on what high level part of Transform Flow is being

build, different modules are required.

The visualisation tool uses the Dream framework[3], and thus pulls in many depen-

dencies specifically for rendering and OpenGL, as shown in Figure 5.10.

| Application/TransformFlow Visualisation

Library/TransformFlow

Library/Dream/Client

Library/Dream/Graphics

Library/Dream/Audio Library/Dream/Client/Display Library/Dream/Display/Context

N

Library/Dream/Display/OSX ‘

Library/OpenGL Library/Dream/Display Library/Dream/Text

)

| Library/Dream/Imaging

| Library/Dream/AudioOpenAL | Library/opencv Library/freetype

VAN

I Library/OpenAL | I Library/vorbis

\

| Library/ogg

Library/Dream Library/jpeg Library/png

| Library/Euclid | | Library/utf8 |

Language/C++11 platform

Platform/darwin-osx

Library/z

Library/bz2

variant

Variant/debug

FIGURE 5.10: The structure of the Transform Flow Visualisation application,
generated by Teapot, for Mac OS X.

In comparison, while the Transform Flow Browser application still depends on the

core Transform Flow algorithms, it doesn’t require the same rendering infrastruc-

ture, as shown in Figure 5.11.
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Dependencies/TranformFlow Brow serlOS |

Library/TransformFlow

‘ Library/Dream/Imaging ‘ Library/opencv

‘ Library/png ’_ ‘ Library/jpeg ‘ Library/Dream

Library/z ‘ Library/Euclid ‘ Library/utf8
platform Language/C++11 ‘ ‘ Library/OpenGLES ‘ Library/OpenGL ‘ Library/OpenAL ‘ Library/bz2 Aggregate/Display

Platform/darwin-ios

variant

FIGURE 5.11: The structure of the Transform Flow Browser for iOS, generated
by Teapot.

5.8 Summary

We have discussed the development of an open source toolkit for mobile AR devel-
opment, including algorithm implementation, data capture, visualisation, analysis
and deployment on real hardware. We have explained how this can be used for
systematic evaluation, and published a number of data sets for fair comparative
analysis. Our implementation is designed from the ground up for cross platform
compatibility and has been structured to support future research in this area. This
toolkit is critical for the on-going evaluation of mobile AR, and is the first publicly
available system for developing and quantifiably evaluating mobile AR tracking

algorithms.

Next, we evaluate our proposed algorithm to show how it works in real world con-

ditions.



Chapter 6

Practical Evaluation

Current outdoor AR platforms provide varying levels of responsiveness. Imperfec-
tions in the visual alignment and poor responsiveness to changes in device orienta-
tion may cause frustration and confusion. We evaluate our algorithm with real world
data sets and on real world devices to find out how our proposed algorithm affects
accuracy and tracking performance, and whether this is an overall improvement for

the usability of AR applications.

In this chapter, we test our proposed algorithm as discussed in Chapter 3 and

Chapter 4 in a variety of real world situations using the tools discussed in Chapter 5.

6.1 Real World Accuracy

We collected several data sets to support the evaluation of our algorithm. We
focused on environments containing at least several vertical edges, as this was one of
the key assumptions for our tracking algorithm to function effectively. We evaluated
data sets that include motion blur, moving objects (cars, people), combinations of

foliage and buildings and other typical situations in mobile outdoor AR.

We use the Transform Flow Visualisation and Evaluation Toolkit[86] as discussed
in Chapter 5 for measuring the quality of the tracking algorithms. We analysed
the bearing of fixed tracking points in several data sets and compared the relative
accuracy of the sensor fusion tracking algorithm in comparison to our proposed

hybrid tracking algorithm.

66
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6.1.1 Results

We present results from four data sets in detail (sample frames shown in Figure 3.2,
Figure 3.3, Figure 3.4, and Figure 3.5). The tracking points used for evaluation
were all on static vertical edges and thus we expect the deviation should be close

to 0° with a perfect alignment.

TABLE 6.1: Relative Bearing Accuracy

Sensor Tracking | Hybrid Tracking
Data Set | S.D. S.E. S.D. S.E. Improvement
2013A0 | 0.37° 0.08° 0.29° 0.06° 1.3x
2013A3 | 8.88° 1.81° 0.35° 0.07° 25.4x
2013A4 | 2.82° 0.54° 0.64° 0.12° 4.4x
2013A5 | 5.93° 1.12° 0.85° 0.16° 7.0x
2013B0 | 2.65° 0.38° 0.76° 0.11° 3.5x%
2013B1 | 2.24° 0.26° 2.22° 0.25° Negligible
2013B2 | 9.52° 1.47° 1.70° 0.26° 5.6
2013C0 | 2.93° 0.49° 0.69° 0.12° 4.24 %
2013C1 | 2.55° 0.43° 0.87° 0.15° 2.9x
2013C2 | 8.34° 1.74° 7.98° 1.66° Negligible
2013D0 | 1.17° 0.28° 0.88° 0.21° 1.3x
2013D1 | 1.83° 0.47° 0.48° 0.12° 3.8%
2013D2 | 1.29° 0.30° 0.18° 0.04° 7.2%

From these results we can see that the image based alignment algorithm in almost all
cases makes a significant improvement. Several notable examples include 2013A3,
2013A5 and 2013B2. In these cases, errors in the compass and gyroscope cause

massive visual shifts such as in Figure 6.1.
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FIGURE 6.1: Bearings computed for 2013A3, showing a significant errors in the
sensor data.

Other difficult situations include fast motion and motion blur, such as in Figure 6.2.

Our feature point extraction works reliably even in these difficult conditions.
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FIGURE 6.2: Bearings computed for 2013B2, showing a significant errors in the
sensor data.

In some cases, there is little improvement. In the case of 2013C2, there is signifi-
cant motion blur combined with few vertical edges which reduces visual alignment
confidence which causes the algorithm to revert back to sensor tracking. This is
expected behaviour but in effect reflects a situation where there was not enough

visual information to improve the alignment within our current statistical model.

6.2 Real World Performance

We profiled the browser implementation and analysed the cost of image processing
based on frame size and scan line width dy on an iPhone 5 attached directly to
a computer (i.e. not running on battery power). The image processing time was
measured for 600 frames captured at 30Hz while the phone was statically positioned
looking at a scene of moderate complexity. We made the measurement twice and

discarded the first set of results.

6.2.1 Results

We evaluated 3 different resolutions, 480 x 360, 640 x 480 and 1280 x 720 and various

appropriate values for dy.

The results in Table 6.2 show that we have adequate options to process images in
real time on current generation mobile hardware, even at 1280 x 720. However, at
this resolution, memory contention and bandwidth in general became the biggest

performance problem. The overhead costs of the higher resolutions are significant,
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TABLE 6.2: Real World Performance Comparison

Frame Time
Resolution dy (px) | Mean S.D. S.E. Max FPS

480 x 360 5 14.9ms 2.9ms 0.Ims 24.8ms 67.1
480 x 360 10 57ms 3.bms 0.lms 15.7ms 177.0
480 x 360 15 29ms 24ms 0.1lms 11.8ms 344.7
480 x 360 20 1.9ms 2.0ms 0.lms 9.6ms 515.0
640 x 480 10 16.0ms 3.2ms 0.lms 24.4ms 62.5
640 x 480 15 11.4ms 4.1ms 0.2ms 21.4ms &87.9
640 x 480 20 8.6ms 4.3ms 0.2ms 17.5ms 115.8
640 x 480 30 54ms 3.6ms 0.lms 13.7ms 183.7

1280 x 720 20 29.1ms 3.6ms 0.1lms 38.2ms 34.3
1280 x 720 30 20.6ms 4.0ms 0.2ms 30.2ms 48.5
1280 x 720 40 16.0ms 3.9ms 0.2ms 26.2ms 62.3
1280 x 720 80 8.8ms 4.0ms 0.2ms 21.7ms 114.1

e.g. copying the image buffer was the 2" largest cost associated after image pro-
cessing itself, both from the camera device to main memory and from main memory

to OpenGL for the video background.

Despite the 1280 x 720 resolution only being 5x as much data, the performance
was 15x worse. We theorise that this is due to the performance of the CPU cache.
480 x 360 is approximately 500Kbytes of RGB data (3 bytes per pixel), which is
about half the available CPU cache on the Apple A6 CPU powering the iPhone 5.
The 1280 x 720 video frame is approximately 2.6Mbytes, which is significantly more
than can fit in the CPU cache. The scan line algorithm implementation is not cache

aware, and thus may cause many L2 cache misses in practice.

In addition, due to the multi-threaded design of the browser application, the full
performance of the phone may be diminished in comparison to synthetic benchmarks
which run exclusively. The CPU and GPU memory is shared and thus the total
throughput will be limited depending on the tasks being performed on other threads.
The benefits of two independent CPU cores may be diminished if the processing is

memory intensive.

For higher frame resolutions, the temperature of the phone increased significantly,
yet the practical usability of the browser was not significantly altered. The bat-
tery life and physical usability of the phone were likely diminished. For real-time
augmented reality, we found 480 x 360 had sufficient image quality with few of the

physical discomforts associated with the higher resolutions.
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Accurate field of view is required for correct image based tracking. While Android
provides a way to access this information programatically, it has to be hard-coded
on iOS devices. While we could measure the performance of processing frames at
1280 x 720, we could not use the resolution in practice as it has a different aspect

ratio and field of view. An appropriate bug report has been filed.

6.3 User Study

A user study was designed to evaluate whether improved tracking would help users
to engage with AR content more precisely. We focused on a task that would require
accurate physical control to align the mobile device with a globally registered object.
By looking at task completion time, we can measure whether different tracking
algorithms have a measurable effect on the users’ ability to complete the task, and

ideally assert that improved tracking can benefit practical AR interactions.

6.3.1 Task

The AR browser application was modified into a small game where users were
required to centre a reticle over a virtual target. One virtual target was placed
around the user at a distance of approximately 35m. The user was required to hold
the reticle over the target accurately for 0.5s to trigger the completion of the task.
After 1s, a new target would be placed somewhere in the world, and the user could

repeat the process.

In order to test the influence of the different algorithms on the user response time,
two modes were used for the tracking task. In the 15 mode, sensor fusion was used
for tracking, while in the 2"¢ mode, the hybrid tracking algorithm was used. To
elicit feedback from the user, in the sensor fusion mode, a red target was used, while

in the hybrid mode, a blue target was used.

The time taken for the task was measured starting from when the reticle intersects
the outside of the target, to when it has been held accurately in the centre for 0.5s.
If the user moved sufficiently far outside the targeting area, the time would be reset
and they could attempt the task again with no penalty. This method ensures that

the time it takes for the user to find the target is not part of the evaluation.
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FIGURE 6.3: A screenshot from the user evaluation application.

The test was run on a battery powered iPhone 5 with a video resolution of 480 x 360.

The results were saved to a CSV file which were processed using a Ruby script.

6.3.2 Results

9 users hit over 140 targets, and we have summarised our results based on the

tracking method used. A full set of results can be found in Appendix D.
TABLE 6.3: User Study Performance Comparison

User ID Tracking Method | Mean S.D. S.E.
All Sensor Tracking 16.53s  7.02s 2.34s
All Hybrid Tracking 7.09s 3.31s 1.10s

The results in Table 6.3 clearly show the benefit of our proposed hybrid tracking
algorithm. A paired t-test was used to compare the different algorithms. There was
a significant difference in the average task completion time for sensor tracking (M =
16.53s, SD = 7.02s) and hybrid tracking (M = 7.09s, SD = 3.31s) conditions:
t(8) = 5.0089, p < 0.0010.

6.3.3 Feedback

Almost all feedback was positive and preferred the proposed tracking algorithm
(blue targets). In particular, it was observed that users generally found the sensor
tracking (red targets) frustrating due to misalignment and drift, making it hard to
precisely hit the red targets. Our algorithm did not suffer from the same problems

and was also significantly more precise and responsive to small changes in rotation.
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“The red ones are really hard.”

“If T had to pick one, I'd say blue was easier. Initially, both were quite
good.”

“It’s quite hard, the red one. Blue was much easier.”
“The blue one was easier, and it was more precise.”

“It changed - at first the red ones were good, but at some point the red

ones seemed to have their own personality, they would run away.”

6.4 Summary

We have tested our proposed algorithm to evaluate it’s accuracy, efficiency and us-
ability on a mobile device. We found that it’s performance was good on current
generation hardware, and significantly faster than existing computer vision algo-
rithms. Precision was also improved over pure sensor tracking in real world tests,

and these results were confirmed by a user study.
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Conclusion

We have presented an efficient method to reduce jitter, enhance accuracy, and im-
prove the outdoor AR experience on consumer-level mobile phones and tablets. Our
hybrid algorithm combines sensor data and video frames to ensure reliable track-
ing, and is tolerant to both inertial and visual noise. The proposed scan line based
vertical edge detector can be tuned for real-time performance on a variety of differ-
ent input resolutions and hardware levels, and the fast integral sequence alignment
algorithm can correct errors in the inertial sensor measurements efficiently. For
its intended usage on mobile devices, our proposed hybrid approach is both faster
than existing algorithms, such that it can run in real time with minimal overhead,
and sufficiently accurate even in cases where existing purely vision-based algorithm

could fail.

The sensor accuracy in consumer level hardware has improved considerably over the
past several years and will continue to improve. During the course of this research,
the amount of processing power has doubled three times, from the iPhone 4, to the
iPhone 4S, iPhone 5 and now iPhone 5S with the motion co-processor. Our image
alignment algorithm exploits this trend by being significantly more efficient when
supplied the correct motion estimate. Ideally, as sensors continue to improve in

accuracy, the implementation should incur proportionally less overhead.

Our results show that our algorithm is efficient, even at higher frame resolutions.
Our effort to develop specific algorithms for mobile outdoor AR ultimately allowed
us to improve the accuracy up to 25x in some cases with only 2-4ms in processing
time per video frame on modern mobile devices. In comparison to existing computer

vision algorithms, this was significantly faster.
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Quantifiable comparisons of mobile outdoor AR algorithms are difficult due to the
lack of open source implementations and testing methodologies. They often re-
quire the reimplementation of existing research, and published comparisons become
less relevant as hardware progresses. To support future synthetic and real world
evaluations in this area, we have made available, under a permissive open source
licence, the tooling and data sets developed during this research. We hope that
these tools will be embraced by the research community and allow for the accurate

and up-to-date comparison of different tracking methods.

Practically speaking, the technology and knowledge developed over the past two
years has fed into several commercial mobile projects, including DiscovAR, CityView-
ARJ[28] for i0S, ColAR and FurniView|[1]. However, despite the proprietary nature
of these projects, we have published a significant amount of source code and de-
signed systems to support future research in this area. We have confidence in the
long term viability and value of this effort and will continue to maintain it for the
foreseeable future. To ensure this, we have put in place an open source develop-
ment methodology which encourages collaboration and shared responsibility. We
look forward to seeing how it develops over the next few years, and hope to see it

used in exciting new research and commercial projects.

7.1 Future Directions

Point cloud based algorithms and tracking can be used for precise positioning and
registration tasks. Existing approaches for tracking camera pose and registering
content have demonstrated the viability of this approach in small environments.
We believe that point cloud tracking and registration can significantly improve
the alignment of content in task-specific outdoor contexts, and thus it seems like
the next logical step for improved outdoor AR. As such, we would like to support
continued development of the Transform Flow toolkit and integrate existing libraries

for point cloud tracking and analysis.

Android support is critical for practical deployment of Transform Flow based algo-
rithms. We already have basic support for Android but further work is needed to
integrate with the Transform Flow motion model interface. Most of the existing
software is compatible with Android, but the actual browser code requires a sig-

nificant investment of platform specific code. We would like to see this developed
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in the future so that we maximise the value of the framework for a wide variety of

mobile devices.

The current motion model only supports registration within a global frame of refer-
ence. We would like to expand this idea for local tracking and registration tasks. We
would therefore like to implement frame-of-reference specific motion models which
could then be run in parallel and used to combine different tracking and registration

techniques into a single application.

Because Transform Flow is an open source project, other researchers have already
expressed interest in continuing the work and developing additional functionality,
including most of the above. We would like to continue keeping Transform Flow

relevant and hope that the project continues to grow.



Appendix A

Fast Integer Sequence Alignment

Implementation

struct Cost

{
int offset;

float error;

std::size_t count;

Cost (int _offset, float _error = 0) : offset(_offset), error(

_error), count(0) {}

bool operator>(const Cost & other) const

{ return error > other.error; }

bool operator<(const Cost & other) const

{ return error < other.error; 1}
bool operator==(const Cost & other) const
{ return this->offset == other.offset && this->error == other.

error; 1}

bool operator!=(const Cost & other) const

{ return !'((xthis) == other); 1}
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void add_error(float amount)

{ error += amount; 7}

};

static float error_bias(std::size_t difference)

{ return (difference * difference) / 2.0; }
template <typename SequenceT>
static Cost calculate_alignment_cost(const SequenceT & u, const
SequenceT & v, int offset, int estimate, float best_error)
Cost cost = {offsetl};
std::size_t 1 = 0, j = 0;
if (offset < 0)
j = —offset;
else
i = offset;
cost.error += error_bias(offset - estimate);
while (i < u.size() && j < v.size())
{
auto d = float(ul[il) - float(v[jl);

cost.add_error (d*d);

i+= 1, j += 1;

cost.count += 1;

if (cost.error > best_error) break;

return cost;

template <typename SequenceT>
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Cost align_small(const SequenceT & u, const SequenceT & v, int

estimate)

{
Cost minimum_cost = calculate_alignment_cost(u, v, estimate,
estimate, std::numeric_limits<float>::max());
// Used to control expansion of the search space:
int left = estimate - 1;
int right = estimate + 1;
// The bounds of the offset search:
int right_bound = (int)u.size() / 2;
int left_bound = -right_bound;
while (left > left_bound || right < right_bound) {
if (left > left_bound) {
Cost cost = calculate_alignment_cost(u, v, left, estimate,
minimum_cost.error);
if (cost.error <= minimum_cost.error)
minimum_cost = cost;
left -= 1;
}
if (right < right_bound) {
Cost cost = calculate_alignment_cost(u, v, right, estimate
, minimum_cost.error) ;
if (cost.error <= minimum_cost.error)
minimum_cost = cost;
right += 1;
}
}

return minimum_cost;
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Motion Model Implementation

This is a basic outline of the motion model code, including the currently specified

sensor updates.

struct SensorUpdate {

TimeT time_offset;

// Used to keep track of debugging information relating to
this sensor update.

mutable std::vector<std::string> notes;

};

struct LocationUpdate : public SensorUpdate {
double latitude, longitude, altitude;

double horizontal_accuracy, vertical_accuracy;

};

struct HeadingUpdate : public SensorUpdate {
// The azis which 4if that azis was pointing morth, the true
bearing would be 0. Defaults to <0, 1, 0>.

Vec3 device_north;

double magnetic_bearing, true_bearing;

};

struct MotionUpdate : public SensorUpdate {

// In radians/second.
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};

Vec3 rotation_rate;

Vec3 acceleration;

Vec3d gravity;

struct ImageUpdate : public SensorUpdate {

};

class MotionModel

{

Ref<Image> image_buffer;

// The horizontal field of view of the camera image

Radians<> field_of_view;

public:
// Inputs:
virtual void
virtual void
virtual void

virtual void

// Outputs:
virtual bool
const Vec3 &

const Vec3 &

update (const LocationUpdate &) = 0;
update (const HeadingUpdate &) = 0;
update (const MotionUpdate &) = 0;
update (const ImageUpdate &) = 0;

localization_valid() const;
gravity () const;

position() const;

Radians<> bearing() const;

updates:
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Video Stream Format

The documentation for the video stream format is available online[98]. Due to the
dynamic nature of the transform flow platform, it is likely that it will grow over time
to support additional types of hardware and sensors. However, the basic outline

provided here should remain relevant and serve as a useful guide.

The format itself consists of a directory of images and a CSV log file. The general

CSV format is as follows:

[sequence-number], [event-name] , [event -arguments,]

There are several pre-defined events:

const char * GYROSCOPE = "Gyroscope';

const char *x ACCELEROMETER = "Accelerometer";
const char * GRAVITY = "Gravity";

const char *x MOTION = "Motion";

const char *x LOCATION = "Location";

const char * HEADING = "Heading";

const char *x FRAME = "Frame";

C.1 DMotion Events

The motion event is a group of device sensor information at a single timestamp.
It currently includes the Gyroscope, Accelerometer and Gravity events with the

same timestamp and typically takes the form:
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1,Gyroscope, [timestamp], [rotation.x],[rotation.y],[rotation.z]

2,Accelerometer, [timestamp], [acceleration.x],[acceleration.y],[
acceleration.z]

3,Gravity, [timestamp], [gravity.x], [gravity.y]l, [gravity.z]

4 ,Motion, [timestamp]

The timestamp SHOULD be the same value for grouped motion events.

C.2 Location Events

The location event typically represents an update from the GPS and includes the

position and accuracy of the update:

1,Location, [timestamp], [latitude], [longitude],[altitude], [

horizontal_accuracyl], [vertical_accuracy]

C.3 Heading Events

The heading event typically represents an update from the compass. It includes

both the magnetic north and true north.

1,Heading, [timestamp], [magnetic_bearing], [true_bearing]

C.4 Frame Events

The frame event represents a camera frame captured and includes data as an ex-

ternal PNG file in the same directory as the log file.

1,Frame, [timestamp], [index]

The file in this case would be called [index] .png or [index] . jpg.
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User Study Results

Each user was asked to hit between 10-20 targets, and the results are listed below.

TABLE D.1: Full User Study Results

User ID Tracking Method | Mean S.D. S.E.

1 Sensor Tracking 16.5s 15.4s 4.7s
Hybrid Tracking 8.5s 4.0s  1.2s
Sensor Tracking 11.8s  11.0s  3.3s
Hybrid Tracking 7.2s 6.2s  2.0s
Sensor Tracking 33.2s  38.0s 12.0s
Hybrid Tracking 12.1s  204s  6.4s
Sensor Tracking 22.7s 18.2s 8.1s
Hybrid Tracking 5.7s 0.6s  0.3s
Sensor Tracking 22.2s 18.7s T.1s
Hybrid Tracking 9.2s 6.5s  2.7s
Sensor Tracking 12.0s  12.2s 4.6s
Hybrid Tracking 9.8s 1285 5.2s
Sensor Tracking 16.9s  16.9s 6.4s
Hybrid Tracking 3.8s 0.8s  0.3s
Sensor Tracking 17.4s 15.6s 4.9s
Hybrid Tracking 4.0s 1.5s  0.5s
Hybrid Tracking 3.5s 2.1s  0.6s
Sensor Tracking 10.8s  7.9s  2.3s
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Work Log

E.1 Late 2011: Ground Plane Detection

One of the first ideas we explored involved tracking feature points on the ground
plane. Due to the speed and accuracy of the accelerometer and gyroscope, calcu-
lating the gravity vector is fast and easy to do. Using this information, a bird’s
eye visual representation of the ground plane can be extracted. Using this trans-
form, feature points can be tracked on the ground plane and mapped to changes in

bearing and position using existing algorithms such as optical flow[34].

We implemented a basic ground plane extraction algorithm, but after investigating
this method, we concluded that this approach wasn’t viable in general. In many
cases the accuracy of the camera wouldn’t be good enough to track feature points
(e.g. if the camera was pointing more than 45° up, the resolution of the ground
plane is reduced significantly) and non-planar features caused significant artefacts

in the final image.

This original implementation was running in real-time and was hard to test. There-

fore, we decided to focus on tools data acquisition and analysis.
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E.2 Late 2011: Data Acquisition Tools

In order to support the development and evaluation of new algorithms we decided
to create data capture and analysis tools. These tools allow existing and new ap-
proaches to be tested in a controlled environment thus ensuring reproducibility of
results. Specifically, we decided these tools would support our quantitative evalua-

tion including comparisons between different algorithms.

The first tool we designed was a mobile data acquisition system (see Figure E.1)
which captures directly from an iPhone’s sensors, including the gyroscope, ac-
celerometer, gravity and video frames. We used the existing ARBrowser application
as a starting point (developed late 2010) and updated it to support real-time data
logging and graphing.
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FiGure E.1: The data acquisition application running on an iPhone 4.

We captured several sample sequences and have used the data capture tool through-
out our research to capture additional sequences for development, bug isolation and

evaluation.

E.3 Early 2012: Data Analysis

After developing the data capture tool, we started thinking about how to analyse
the data and design an algorithm. We started working on a desktop application for

processing the captured data-sets and visualising them in 3D, such as in 5.3.

We used this tool to develop intuition and explore ideas. We could repeatedly

replay the same data-set with different algorithms and check the results. This
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FIGURE E.2: The data visualisation application running on a laptop computer.

helped guide our designs for the proposed algorithm and through visual inspection
of data processing and image analysis we have developed a good understanding of

the strengths and weaknesses of different approaches.

E.4 Mid 2012: Transform Flow Implementation

Our first approach extracted key-points by using scan lines to detect changes in
adjacent pixels, in some ways similar to a Harris Corner Detector[99], but it improves
on typical feature registration by using the gravity vector for consistency across

frames.

Using sensor data, a motion estimate between sequential frames could be calcu-
lated. Using camera intrinsics along with motion estimates allows us to formulate
a per-pixel correspondence between image frames, however due to sensor inaccura-
cies, visual features are not always aligned from one frame to the next. We sought
to reduce this error by aligning visual features between frames using the motion

estimate as a predictive guide as to where features may have shifted.

To reduce the burden of extracting feature points every frame, we attempted to
track edges across multiple frames. Some data-sets worked reasonably well, but
others failed. Individual feature points could provide a good local estimate, but

calculating a global change in position was still difficult.

Our preliminary results confirmed that traditional feature point tracking algorithms

would not be able to run in real-time without significant modifications - building
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pyramids, extracting feature points, and tracking them across frames were all in-
credibly expensive operations and existing software was not designed with mobile
hardware in mind. Because of this, we decided that a good quality for a scalable
algorithm would be the ability to adjust the amount of image processing required

and get a proportional change in accuracy.

E.5 Mid 2012: ST Project

I travelled to Singapore for three weeks to work on an augmented reality naviga-
tion application (see E.3 for an example screenshot). Due to project requirements
we were targeting iPhone hardware. We combined existing research from naviga-
tion and outdoor augmented reality to develop a dynamic navigation system that

responded to the user’s position and orientation.

A"
,?/ : l Turning
Turn left after the Old Math

building.

FIGURE E.3: A screenshot from the Urban Navigation project developed as part
of the ST Project.

This implementation provided practical insight into the limitations of existing sensor

based tracking algorithms. We adjusted the design of the application so that error
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in the global position would have less of an effect on the visualisation. In addition,
a significant amount of effort was required to ensure that the navigation waypoint

tracking was tolerant to both positional and orientation errors.

E.6 Late 2012: Teapot

After becoming significantly frustrated with the growing amount of source code and
the challenges associated with building on multiple platforms, we started working
on Teapot. The initial structure for Teapot had been developed as part of the
Dream framework for OpenGL graphics, but the original implementation was not
sufficient for use in other projects. By extracting out and refining the existing

package management scripts from Dream, Teapot was born.

E.7 Late 2012: ColAR

As part of a commercial company grown out of HIT Lab NZ research, we have
been implemented a typical natural feature tracking algorithm for planar based
registration. While the goals of this work are significantly different from typical
outdoor augmented reality, the algorithms and their use overlap in some areas and
it was helpful to look at existing natural feature tracking algorithms and their

efficient implementation.

The prototype for ColAR was designed to overlay 3D content on 2D planar colouring
in pages. The initial registration step analyses feature point correspondence between
a known 2D planar image and the input from the camera (see Figure E.4). Not
all features match correctly, so RANSAC is used to refine the set of features by

assuming planar correspondence.

Corresponding feature points are used to extract 3D translation and rotation, which

allows virtual content to be aligned with planar surfaces in the real world.
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FiGure E.4: Feature point correspondence using ORB binary feature points and
FLANN matching.

E.8 Mid 2013: Refinement

We improved the visualisation platform and used it to debug and evaluate our
proposed algorithm. Our previous implementation of the image alignment code
was brute force. We formalised the FISA algorithm and developed several initial

implementations to test the viability of the integral alignment approach.

E.9 Late 2013: Evaluation

We modified our existing browser to support the Transform Flow library’s algo-
rithms. We used this to develop and run a user study. Practical testing also revealed
several areas where the algorithm could be improved, and testing on a variety of

different camera resolutions was also useful.

We captured 8 additional data sets and used the visualisation tool to define track-

points and evaluate our proposed algorithm.
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