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Abstract—It is common in mobile augmented reality
(AR) research to examine results that were attained
with unpublished tools and data sets, which makes it
difficult to compare and improve existing work with-
out significant effort. We discuss the development of
an open source toolkit called Transform Flow, which
includes a data capture application for iOS, a desktop
application to replay and analyse captured data sets
with different algorithms, and a mobile application
that can run these algorithms in real-time. Our results
suggest that our toolkit can be a centre for collaborative
research, as it provides a common platform on which
tracking algorithms for mobile AR can be developed,
studied and eventually deployed.

I. Introduction
Evaluating and comparing algorithms is an important

part of quality research. The ability to compare different
approaches with the same data sets is critical to the devel-
opment of improved methods. This is also true for mobile
augmented reality (AR), where many tracking algorithms
are developed specifically within the constraints of a par-
ticular hardware configuration and testing methodology.
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Fig. 1. An overview of typical data flow in mobile outdoor AR.

Ideally, sensor and visual data, as outlined in Figure 1,
is captured from a variety of mobile devices in such a
way that it can be repeatedly replayed. Algorithms can be
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critically analysed, frame by frame, to isolate edge cases
and bugs in a controlled environment; test cases can be
developed and run automatically to check for regressions.
In addition, with the right design, both offline and online
processing of input data should be possible, so that algo-
rithms can be seamlessly deployed on real hardware for
user evaluation and application development.

An open source platform that facilitates the analysis
of new and existing algorithms would allow researchers to
develop and test new ideas easily. Existing code can be
reused, which typically reduces the challenges and risks
associated with software development. Such a platform
could also serve as a useful educational tool for students
wanting to learn about different tracking algorithms and
how they are implemented.

We describe the ongoing development of Transform
Flow, which has recently been released under the MIT
license. It was originally developed as part of a single
research project, but is being released to the community
to encourage collaborative research, development and ed-
ucation in the area of mobile AR.

II. Background
Testing and evaluating tracking algorithms designed for

mobile devices is currently unsystematic[1], [2], [3]. This is
a big problem for new research which seeks to improve on
existing approaches, because it makes it hard to compare
results objectively.

Even as recently as 2009, researchers were develop-
ing custom devices for outdoor AR[4] research. Tracking
algorithms are often structured around poorly specified
platforms and obscure hardware[5], [6], [4]; missing details
or obsolete hardware make identical reconstruction, and
thus comparisons based on published results, impossible.

Data sets and testing tools are often not publicly
published[7] which makes it difficult to check whether a
new approach is a significant improvement over existing
methods. In particular, algorithms that fail on specific edge
cases[3] warrant further analysis and study; but without
the specific data sets and systematic evaluation tools this
is not possible.

Similarly, public data sets commonly used for com-
puter vision evaluation don’t include inertial sensor
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measurements[8], [9], [10], which makes them inappropri-
ate for modern mobile AR research[11]. Inertial gravity
measurements have been synthesised from ground truth
camera poses, which allows some types of hybrid tracking
algorithms to be benchmarked on existing data sets[12],
however other sensors including gyroscope, magnetometer
and compass were not considered. Modern hybrid algo-
rithms may depend on a full range of inertial sensor
measurements to operate correctly and efficiently, and thus
prior work evaluated with these data sets would not be
easily comparable.

Modern consumer mobile phones and tablets provide
an excellent variety of sensors in low cost, readily available
off-the-shelf packages. This is an ideal platform for many
types of AR research, because it is representative of the
type of environment algorithms would be expected to work
in if deployed to a wider audience. However, despite this
level of standardisation, we lack modern tools and data
sets for testing and evaluating tracking algorithms on these
platforms.

Published research in mobile AR often lacks source
code[3], [11]. There are many reasons for this: copyright/li-
censing/intellectual property restrictions, poor quality
code (suitable for evaluation but not for actual use), lack
of time to properly release code (documentation, ongoing
maintenance, compatibility with multiple platforms); but
practically speaking, it makes the development and test-
ing of new approaches difficult. Implementing a tracking
algorithm from scratch is a large undertaking and requires
a significant investment of time.

In addition, published data sets and evaluations gen-
erated using a specific hardware device quickly become
obsolete, as the hardware and sensors are constantly im-
proving and changing. To accurately compare algorithms
on consumer level hardware, a working implementation
is required, otherwise performance and accuracy cannot
be accurately compared. Therefore it is necessary to have
access to the source code to perform a realistic comparative
analysis of any kind.

The pace of rapid innovation in consumer mobile de-
vices drives changes in the supporting mobile operating
systems (OS), including the software frameworks and li-
braries on which our tracking and registration algorithms
are built. Major platforms (e.g. Android, iOS) are com-
pletely different in their underlying implementations, such
that compiling code for multiple platforms can be a huge
burden. There is a culture in commercial AR of only
providing the compiled static library, but as hardware
changes, these libraries may stop working, and fixing
these bugs is practically impossible. If the source code is
available and of a reasonable quality, many of these issues
at least become addressable.

There are several open source projects which im-
plement inertial sensor based mobile AR tracking al-
gorithms. However, many of the most promising ones
seem unmaintained[13], [14], [15]. Other libraries which
are maintained, are device specific[16] and application
specific[17]. None of the evaluated libraries provide specific
tools for the research and development of mobile outdoor

AR tracking algorithms.

A. Motivations
The software described in this paper was developed to

support a research project investigating improved methods
for outdoor AR tracking. It represents a significant invest-
ment of time. We have decided to publish the code, doc-
umentation, and data sets as completely unencumbered
open source, in the hopes that its availability will reduce
the barriers we faced when first entering this field.

In addition, we believe that the structure of our con-
tribution can encourage a systematic approach to the
development of new algorithms. The existing code base
includes many practical examples, and over time we hope
that our tooling can serve as a useful platform for a wide
variety of tracking implementations.

This is an ongoing project and we realise that it
may not fit everyone’s requirements. We have specifically
chosen online systems that support collaboration, so as to
maximise the value of the toolkit - not just for our needs
- but for the needs of this field in general.

III. Motion Models
A motion model is an abstract interface that wraps the

implementation of a specific tracking algorithm. The set of
inputs and outputs are well defined, and relate specifically
to the tracking task being performed. Multiple algorithms
can be implemented with the same programming interface,
which allows the visualisation and browser applications to
interact with different implementations without significant
changes.

We specifically designed our motion model abstraction
around the hardware capabilities of modern mobile devices
and the types of data required for accurate global out-
door AR tracking. Specific types of motion models may
require additional inputs or outputs. For local image based
tracking, we may output a camera pose relative to a local
frame of reference. Other motion models might require
direct access to the magnetometer. This is supported by
subclassing and modifying the source code appropriately.

To serve as an example, we include two motion models
in the current distribution. These motion models can be
compiled and used both in the visualisation tool and in
the browser application:

A. Basic Sensor Motion Model
The included basic sensor motion model implements

a sensor fusion based tracking algorithm. It combines the
compass and gyroscope using a low-pass filter for improved
bearing calculations. It tracks relative changes in rotation
around the gravity axis, and exposes these as an output.

In order to initialise the basic sensor motion model,
at least one motion update is required to establish a
gravity vector, and one heading update to establish a
global bearing. After that point, gyroscope updates are
combined with heading, and along with the gravity vector
and GPS, this provides a fairly robust global frame of
reference.



B. Hybrid Motion Model

The hybrid motion model derives from the basic sensor
motion model and incorporates image processing into the
bearing calculation[18]. It uses the rotation about gravity
as the estimate for image processing which computes an
accurate global bearing. In the case of a visual tracking
failure, sensor fusion provides continuity but typically at
a decreased level of accuracy. This ensures a robust output
even in challenging scenarios.

IV. Data Capture

We created a mobile data acquisition system[19] to
capture sensor data and video frames. This application was
developed for iOS using Objective-C. The rate at which
sensor data and video frames are captured is independent,
and can be customised at compile time. All data is saved in
a CSV (comma separated values) formatted log file, includ-
ing video frames that reference external PNG (portable
network graphics) image files in the same directory.

Sensor data is captured using Apple’s CoreLoca-
tion and CoreMotion frameworks. CoreLocation provides
WGS84 latitude, longitude, altitude and bearing, while
CoreMotion provides gravity, linear acceleration rotation
rate and magnetic flux. The position and bearing typically
have quite a high latency, while the motion data is usually
captured at 30Hz.

Video frames are captured using AVFoundation that
provides access to the camera at a variety of resolutions.
We record the captured image as interpolated RGB, which
is universally supported across all devices and a convenient
format for further processing. We typically capture at
480 × 360 at 10Hz - higher frame rates generate huge
amounts of data and can be harder to analyse.

Phone specific data including the device name and
hardware identification are recorded as one of the first
entries in the log file. This can be used for hardware or
device specific calibration files.

In order to support global tracking algorithms, when
recording is triggered, the current position and bearing are
written to the log file if possible. This allows at least one
global position and bearing entry to exist before frame
data and motion data, which is typically required for
initialisation.

Fig. 2. The data capture application running on an iPhone 5.

The tool includes a real-time visualisation of sensor
measurements. This allows for a greater understanding of
the effects that the physical device motion is having on the
sensor data. It can be instructive to check the gyroscope,
accelerometer or other sensors while manipulating the
device. Per-device issues including calibration problems
and drift can be assessed quickly and isolated.

A. Android Support
An existing Android data capture tool, developed by

another researcher, Alexander Pacha, has been modified
and contributed to the Transform Flow project[20]. It can
output Transform Flow style data sets from a wide range of
Android devices. It has not yet been extensively tested, but
supporting a wide range of hardware can be challenging.
The coordinate systems for inertial sensors may not be
consistent, the field of view for the camera may not be
correct, the sensor output may be more or less accurate
than generally expected, and the latency in sensor mea-
surements might be significantly different from the norm.
Manufacturer and platform specific implementations of the
sensor fusion algorithms may also produce different results.

Dealing with these issues is critical for wide-spread
deployment on consumer grade hardware. The Android
data capture tool is the first step to understanding and
solving these problems, and this process will present many
good opportunity to further refine and collaborate on the
Transform Flow library.

B. Data Set Format
Data sets are recorded using the on-screen switch. This

information is saved into the phone’s memory and can be
downloaded to a computer using the Xcode organiser. The
data sets themselves were designed to be simple to work
with and flexible enough to support future requirements.

We use CSV as it is a simple format for structured
data and can be logged easily. We uniquely identify each
row in the log using an index starting from 1, a function
name (e.g. “Gyroscope”) and a timestamp. The function
name relates to the structure of the remaining arguments
in the row and is used for processing rows into useful data
structures.

It is easy to modify the data capture tool to add ad-
ditional data structure records, e.g. adding battery status,
GPS course, current waypoint, or other parameters that
may be of interest. This allows for the data capture appli-
cation to be extended with new capabilities as required for
specific research areas, while retaining core functionality
and compatibility with existing processing/visualisation
tools.

Nested data can be supported using sequential rela-
tionships. For ease of readability, gyroscope, accelerome-
ter and gravity vectors are recorded separately, but are
immediately followed by a motion entry with the same
timestamp, which ties them together into one logical unit
for processing. In the future, additional motion specific

A more detailed specification can be found in the online source
code documentation



fields could be added, e.g. magnetometer measurements,
without modifying any other structures.

V. Visualisation
We have developed a desktop application[21], shown in

Figure 3, for viewing data sets captured using the mobile
data acquisition tool. This application is written in C++11
and uses OpenGL for rendering. It currently compiles for
Mac OS X and Linux support is almost complete.

Our current implementation assumes that the user is
interested in visualising data within a global frame of
reference, with position defined by (latitude, longitude,
altitude) and rotation defined by (bearing, gravity). To
systematically capture this data, we define an abstract
motion model that is used to process incoming sensor data
and image frames.

The camera pose is computed in two steps, a quaternion
rotation based on the bearing and gravity information,
and a displacement based on the latitude and longitude.
We use East, North, Up (ENU, maps to XYZ) Cartesian
coordinates which are intuitive and practical for the small
data sets we are usually evaluating.

The input data set, combined with a motion model,
produces an immutable per-frame globally registered cam-
era pose. This sequence of frames can then be visualised
and analysed without further motion processing. In the
case that a motion model requires several sensor updates
before it can be initialised reliably, the visualisation will
start at the first frame after the localisation becomes valid.

Fig. 3. The Transform Flow Visualisation application rendering 50
combined frames in a 3D environment. The makers have been added
by different feature detection algorithms.

Displaying frames in a 3D environment is challenging
because a camera frame is a planar projection of a typically
non-planar environment. Without depth information it is
impossible to accurately reproduce the actual 3D struc-
ture. To work around this problem, the visualisation tool
uses planar projections based on the camera’s field of view
and an arbitrary scale factor. Frames can then be rendered
in a 3D environment and explored using an arbitrary view

position. Pure rotations result in the easiest to interpret
visualisation as there is no change in planar alignment.

A. Analysis

Visual inspection of data sets in a 3D frame of reference
(see Figure 4) provides a good high level overview of
algorithm behaviour and exposes tracking errors including
incorrect coordinate frames (e.g. rotation on the wrong
axis), sensor integration issues (e.g. large jumps between
frames) or bad feature point detection.

Fig. 4. A 360◦ panoramic data set, with the first frame visible, in the
Transform Flow Visualisation tool. The user can interactively navi-
gate through individual frames and view their associated metadata.

Each frame can have a set of debug notes and visual
markers associated with it. These are essentially debug
messages from the motion model. Per-frame logging is a
useful debugging tool and provides specific feedback about
how the motion model was working internally. Per-frame
feature points show a structured analysis of the image data
and allow a user analyse the details of individual points by
selecting them visually.

B. Evaluation

Systematic evaluation is an important process for as-
cribing a metric to the quality of a tracking algorithm
without manual intervention. It allows for the critical and
consistent comparison of different algorithms over a wide
variety of data sets and for the comparison of the same
algorithm as it is being developed and tweaked.

Transform Flow includes support for tracking points,
which are spatial markers registered against pixel coor-
dinates for a specific image frame in a specific data set.
Tracking points are stored in a separate CSV file inside the
data set, and the visualisation tool provides some features
to assist with the generation of this data. Tracking points
which represent the same visual feature are grouped by
a tracking index number, and these form the basic data
structure required for further processing.

We have implemented a method to evaluate the accu-
racy of per-frame bearing. We use groups of static tracking
points (such as in data set 2013D0 shown in Figure 5)
which are generally fixed physical features, and compute



the 3D position of these points using the camera pose
computed by the tracking algorithm. We project these
points on the plane Z = 0 and compute the bearing.
With purely rotational motion, the relative bearing should
not change, which is our ground truth. We compute the
bearing of each tracking point and measure the average,
standard deviation and standard error. The stability of this
metric reflects the quality of the tracking algorithm.

Fig. 5. The 2013D0 tracking point shown in four frames.

In the future, we would like to add a projective based
evaluation technique[22]. Given the same feature point
in multiple frames, for all frames which contain that
feature point, the projection of feature point into a 3D
environment should converge to a single 3D position. The
distribution of this convergence is directly related to the
quality of the tracking algorithm, and similarly to the
bearing evaluation, provides us with a metric to compare
different approaches systematically.

C. Sample Data Sets

In order to facilitate consistent testing and evaluation,
and additionally provide sample data for the visualisation
tool, 14 data sets have been published and documented[23].
These data sets are captured using the published iOS
capture tool, and include a full range of sensor measure-
ments. We hope that the publication of these data sets will
stimulate others to do the same and that over time a large
corpus of sample data can be built up to support a wide
range of evaluation techniques.

VI. Deployment

We have developed an iOS application, the Transform
Flow Browser[24] that can be used to run algorithms devel-
oped using the Transform Flow motion model abstraction.
It uses a similar setup to the capture tool, but rather than
logging the events, it applies them directly to a motion
model. The AR visualisation is then rendered using the
calculated frame of reference.

Fig. 6. The Transform Flow Browser, showing a 3D model on top
of The HIT Lab NZ.

The browser can display points of interest using 3D
content (via Wavefront OBJ files) and 2D billboards (con-
structed directly from UIView instances), which are ren-
dered on top of a real-time video stream using OpenGLES.
The visualisation includes a planar grid which is useful
for understanding the practical tracking quality, e.g. jitter,
rotations. The implementation itself is multi-threaded, and
uses Grand Central Dispatch to offload the rendering,
camera frame capture and motion model computations to
separate CPU cores so that the main user interface remains
responsive.

Dealing with a wide variety of camera and screen
configurations is not trivial. Specifically, different cameras
have different intrinsic properties, the most important
being the field of view. We estimate this parameter as 55◦

which is, in practice, ±2◦ for commonly used iOS devices.
Device specific calibrations might be useful in a research
setting but would be cumbersome for end user applica-
tions. Ideally, a per-device database of camera intrinsic
properties would allow for wide spread deployment with
acceptable accuracy, or for unknown devices, some kind of
online calibration procedure.

A. Android Support

The browser application is very much platform spe-
cific code as it involves custom UI, rendering and other
functionality. In addition, custom code is required for
interacting with the hardware (e.g. cameras, sensors). This
means that there is a moderate amount of per-platform
work required. However, the Transform Flow library and
it’s supporting libraries all support cross-platform compi-
lation. Because of that, the core tracking functionality need
not be reimplemented for different platforms.

Several researchers are presently working on adapting
the existing AndroidAR browser to support Transform
Flow via the Android NDK. We hope this work progresses
and allows us to support a wide range of devices.

VII. Source Code

One of the important goals of this project was to create
something that would facilitate collaboration and further
research. As such, the data capture, analysis and browser
tools have been released under the MIT license on GitHub.
The MIT license allows developers to use the source code
free of charge with very few limitations (e.g. commercial
use is acceptable).

GitHub provides a fantastic environment based on
Git[25] where other researchers can easily fork the source
code and contribute back their modifications. We hope to
integrate new motion models and evaluation methodolo-
gies as they are developed, so that our project can serve
as a useful tool for comparative analysis for future work.

A. Unit Testing

Ensuring that changes and modifications don’t intro-
duce problems with existing code is a useful requirement
for collaborative projects. GitHub, when combined with
Travis-CI[26], provides immediate feedback when users



make source code submissions (pull requests) on public
projects.

Many component parts of the Transform Flow toolkit
have unit tests, which means that any time the code is
changed, either directly in the repository on GitHub, or
as a pull request from another user, the unit tests will
be run and the results reported appropriately. This helps
to ensure that new users making contributions can feel
confident that they are not breaking existing code and
supports existing maintainers who might be refactoring or
adding new features.

In addition, unit tests also serve to document various
parts of the system and how to use them. Functional
tests provide useful examples of specific functionality and
integration tests show how to combine different parts of a
system. This allows new users to become familiar with the
code quickly and easily, and serves as a working example
of the available functionality and how it should be used.

VIII. Conclusion
The data capture and visualisation tools are useful for

developing, analysing and evaluating mobile outdoor AR
tracking algorithms. We believe that they can reduce the
time it takes to investigate new ideas and will ultimately
improve the collaboration between existing researchers.

The AR browser client application can be used to
validate tracking algorithms on a variety of real world
devices and provides a starting point for usability testing
and application development.

We have confidence in the long term viability of the
project and will continue to maintain it for the foreseeable
future. To support this, we implemented an open source
development methodology which encourages collaboration
and shared responsibility. We look forward to seeing how
it develops over the next few years, and hope to see it used
in exciting new research.
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