

A path finding algorithm.

@ Given a state space, such as a 2-dimensional
map, find a path from point A to point B in
that space, if such a path exists.

@ If such a path exists, return a path within
certain criteria - ie: shorfest path, most
straight path, avoiding certain areas, efc.

The A* Algorithm

@ Developed in 1968 for
solving different kind of
problems such as the
'15-puzzle’.

@ Searches for the least costly path from a
starting state to a goal state by examining
adjacent states of a particular state.

The A® Algorithm

@ Developed in 1968 for
solving different kind of
problems such as the
'15-puzzle’.

@ Searches for the least costly path from a
starting state to a goal state by examining
adjacent states of a particular state.

Starting State Adjacent States Goal State

Goal State

Adjacent States

Starting State

@ The algorithm works by repeatedly examining
the most promising unexplored adjacent
state.

@ A priority queue ' " contains all adjacent
unexamined states, sorted in order of lowest
cost.

o A list ' ‘ contains all examined states.

@ Initially, the list is empty, while the
list contains a single starting state.

A Simple Example

Al (0)

A Simple Example

Al (0)

Adjacent States (1 move from start)

A Simple Example

Al (0)
Bl (1)

A2 (1)

A Simple Example

Bl (1)
A2 (1)

A Simple Example

Al (0)
Bl (1)

A2 (1)

A Simple Example

Bl (1) Al (0)
A2 (1) |

A Simple Example

Bl (1) Al (0)
A2 (1) |

Adjacent States (2 moves from start)

A Simple Example

Bl (1) Al (0)

A2 (1) |
el 2y
> B2 (2)
A3 (2)

A Simple Example

Al (0)

el (2]
> B2 (2)
A3 (2)

A Simple Example

Al (0)
- B1(1)
~ Cl (2) | A2 (1)
> B2 (2)
A3 (2)

A Simple Example

Cl (2) | Al (0)
B2 (2) | B1 (1)
A3 (2) | A2 (1)

A Simple Example

Cl (2) | Al (0)
B2 (2) | B1 (1)
A3 (2) | A2 (1)

Adjacent States ‘('3 move from start)

A Simple Example

Cl (2) | Al (0)
B2 (2) | B1(1)
A3 (2) | A2 (1)
el (3)
B5.(5Y

A Simple Example

N (0)
~ BL (1)
A2 (1)

el (3)
B5.(5Y

A Simple Example

Al (0)
- B1(1)

A2 (1)
c2 (3) [Cl (2)
B5.(5Y

A Simple Example

c2 (3) | Al (0)
B3 (3) | Bl (1)
A2 (1)
Cl (2)

A Simple Example

C2(3) | Al (0)

7 f B3 (3) | BI1 (1)

E A2 (1)
| Cl (2)
4

o)
Adjacent State is Goal!

A Simple Example

@ It is now possible
to construct a

path back to the
starting point.

A Simple Example

@ This example is very simple, and every state
within the 3x3 grid was explored. However,
many optimizations can be made to the A
algorithm to increase efficiency.

@ One such optimization is to add a Heuristic
to the cost of each state evaluated. A good

heuristic will increase efficiency - up to
100% in best cases.

Heuristic

Bad Heuristic Good Heuristic

Closed Search Space

Summary

@ The A* algorithm will always return the most efficient
path, if one exists.

o If there is no path, however, then the A* algorithm
becomes inefficient, as all state space will be explored.

@ The A* algorithm can be extended to support multiple
goals and multiple start locations, and is generally very
adaptable to many different problem domains, ranging
from music to computer graphics.

