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A path finding algorithm.



A path finding algorithm. 

Given a state space, such as a 2-dimensional 
map, find a path from point A to point B in 
that space, if such a path exists.

If such a path exists, return a path within 
certain criteria - ie: shortest path, most 
straight path, avoiding certain areas, etc.



The A* Algorithm

Developed in 1968 for 
solving different kind of 
problems such as the 
‘15-puzzle’.

Searches for the least costly path from a 
starting state to a goal state by examining 
adjacent states of a particular state.
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The algorithm works by repeatedly examining 
the most promising unexplored adjacent 
state.

A priority queue ‘Open’ contains all adjacent 
unexamined states, sorted in order of lowest 
cost.

A list ‘Closed’ contains all examined states.

Initially, the Closed list is empty, while the 
Open list contains a single starting state.
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A Simple Example

It is now possible 
to construct a 
path back to the 
starting point.
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A Simple Example

This example is very simple, and every state 
within the 3x3 grid was explored. However, 
many optimizations can be made to the A* 
algorithm to increase efficiency.

One such optimization is to add a Heuristic 
to the cost of each state evaluated. A good 
heuristic will increase efficiency - up to 
100% in best cases.
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Summary

The A* algorithm will always return the most efficient 
path, if one exists.

If there is no path, however, then the A* algorithm 
becomes inefficient, as all state space will be explored.

The A* algorithm can be extended to support multiple 
goals and multiple start locations, and is generally very 
adaptable to many different problem domains, ranging 
from music to computer graphics.


