


A*
A path finding algorithm.



A path finding algorithm. 

Given a state space, such as a 2-dimensional 
map, find a path from point A to point B in 
that space, if such a path exists.

If such a path exists, return a path within 
certain criteria - ie: shortest path, most 
straight path, avoiding certain areas, etc.



The A* Algorithm

Developed in 1968 for 
solving different kind of 
problems such as the 
‘15-puzzle’.

Searches for the least costly path from a 
starting state to a goal state by examining 
adjacent states of a particular state.



The A* Algorithm

Developed in 1968 for 
solving different kind of 
problems such as the 
‘15-puzzle’.

Searches for the least costly path from a 
starting state to a goal state by examining 
adjacent states of a particular state.



Starting State Adjacent States Goal State



Starting State Adjacent States Goal State



Starting State Adjacent States Goal State



The algorithm works by repeatedly examining 
the most promising unexplored adjacent 
state.

A priority queue ‘Open’ contains all adjacent 
unexamined states, sorted in order of lowest 
cost.

A list ‘Closed’ contains all examined states.

Initially, the Closed list is empty, while the 
Open list contains a single starting state.



A Simple Example

A B C

1

2

33 G

Open Closed

A1 (0)
0



A Simple Example

A B C

1

2

33 G

Open Closed

A1 (0)
1

1

Adjacent States (1 move from start)

0



A Simple Example

A B C

1

2

33 G

Open Closed

B1 (1)
A2 (1)

1

1

A1 (0)
0



A Simple Example

A B C

1

2

33 G

Open Closed

B1 (1)
A2 (1)

1

1



A Simple Example

A B C

1

2

33 G

Open Closed

B1 (1)
A2 (1)

1

1

A1 (0)
0



A Simple Example

A B C

1

2

33 G

Open Closed

B1 (1) A1 (0)
A2 (1)1

1

0



A Simple Example

A B C

1

2

33 G

Open Closed

B1 (1) A1 (0)
A2 (1)1

1

0 2

2

Adjacent States (2 moves from start)

2



A Simple Example

A B C

1

2

33 G

Open Closed

A1 (0)

C1 (2)
B2 (2)
A3 (2)

2

2

0 1

1

B1 (1)
A2 (1)

2



A Simple Example

A B C

1

2

33 G

Open Closed

A1 (0)

C1 (2)
B2 (2)
A3 (2)

2

2

0

2



A Simple Example

A B C

1

2

33 G

Open Closed

A1 (0)

C1 (2)
B2 (2)
A3 (2)

2

2

0

1

1 B1 (1)
A2 (1)

2



A Simple Example

A B C

1

2

33 G

Open Closed

C1 (2) A1 (0)
B2 (2)
A3 (2)

2

2

0

1

1 B1 (1)
A2 (1)

2



A Simple Example

A B C

1

2

33 G

Open Closed

C1 (2) A1 (0)
B2 (2)
A3 (2)

2

2

0

1

1 B1 (1)
A2 (1)

2

Adjacent States (3 move from start)

3

3



A Simple Example

A B C

1

2

33 G

Open Closed

A1 (0)

C2 (3)
B3 (3)

0

1

1 B1 (1)
A2 (1)

3

3

2

2

2

A3 (2)
B2 (2)
C1 (2)



A Simple Example

A B C

1

2

33 G

Open Closed

A1 (0)

C2 (3)
B3 (3)

0

1

1 B1 (1)
A2 (1)

3

3



A Simple Example

A B C

1

2

33 G

Open Closed

A1 (0)

C2 (3)
B3 (3)

0

1

1 B1 (1)
A2 (1)

3

32

2

2
C1 (2)

...



A Simple Example

A B C

1

2

33

Open Closed

C2 (3) A1 (0)
B3 (3)0

1

1 B1 (1)
A2 (1)

3

32

2

2
C1 (2)

...



A Simple Example

A B C

1

2

33

Open Closed

C2 (3) A1 (0)
B3 (3)0

1

1 B1 (1)
A2 (1)

3

32

2

2
C1 (2)

...4

Adjacent State is Goal!



A Simple Example

It is now possible 
to construct a 
path back to the 
starting point.

A B C

1

2

33

0 1

3

2

4

1 2

2 3



A Simple Example

This example is very simple, and every state 
within the 3x3 grid was explored. However, 
many optimizations can be made to the A* 
algorithm to increase efficiency.

One such optimization is to add a Heuristic 
to the cost of each state evaluated. A good 
heuristic will increase efficiency - up to 
100% in best cases.



Heuristic

S G S G

Bad Heuristic Good Heuristic

Closed Search Space



Summary

The A* algorithm will always return the most efficient 
path, if one exists.

If there is no path, however, then the A* algorithm 
becomes inefficient, as all state space will be explored.

The A* algorithm can be extended to support multiple 
goals and multiple start locations, and is generally very 
adaptable to many different problem domains, ranging 
from music to computer graphics.


