

A path finding algorithm.

A path finding algorithm.

- Given a state space, such as a 2-dimensional map, find a path from point A to point B in that space, if such a path exists.
- If such a path exists, return a path within certain criteria - ie: shortest path, most straight path, avoiding certain areas, etc.

The A* Algorithm

- Developed in 1968 for solving different kind of problems such as the '15-puzzle'.
- Searches for the least costly path from a starting state to a goal state by examining adjacent states of a particular state.

The A* Algorithm

- Developed in 1968 for solving different kind of problems such as the '15-puzzle'.

- Searches for the least costly path from a starting state to a goal state by examining adjacent states of a particular state.

Starting State Adjacent States Goal State

Starting State Adjacent States
 Goal State

Starting State Adjacent States
 Goal State

- The algorithm works by repeatedly examining the most promising unexplored adjacent state.
- A priority queue 'Open' contains all adjacent unexamined states, sorted in order of lowest cost.
- A list ' ' contains all examined states.
- Initially, the list is empty, while the Open list contains a single starting state.

A Simple Example

A Simple Example

Adjacent States (1 move from start)

A Simple Example

	Closed
B1 (1)	A1 (0)
A2 (1)	

Adjacent States (2 moves from start)

A Simple Example

1	A B C				Closed
				B1 (1)	A1 (0)
	0	1	2	A2 (1)	
	1			C1 (2)	
	\downarrow			B2 (2)	
	2			A3 (2)	

A Simple Example

A Simple Example

A Simple Example

A Simple Example

Adjacent States (3 move from start)

A Simple Example

	$A \quad B$	c		Closed
			C1 (2)	A1 (0)
1	$0 \rightarrow 1 \rightarrow 2$		B2 (2)	B1 (1)
2	$1 \rightarrow 2$	3	A3 (2)	A2 (1)
	\downarrow		C2 (3)	
	2	G	B3 (3)	

A Simple Example

1	A B	c		Closed
				A1 (0)
	$0 \rightarrow 1 \rightarrow$			B1 (1)
2	$1 \rightarrow$	3		A2 (1)
			C2 (3)	
3		G	\rightarrow B3 (3)	

A Simple Example

	$A \quad B$	c		Closed
				A1 (0)
1	$0 \rightarrow 1 \rightarrow 2$			B1 (1)
2	$1 \rightarrow 2$	3		A2 (1)
3	\downarrow		C2 (3)	C1 (2)
	2	G	B3 (3)	...

A Simple Example

A Simple Example

Adjacent State is Goal!

A Simple Example

- It is now possible to construct a path back to the starting point.

A Simple Example

- This example is very simple, and every state within the 3×3 grid was explored. However, many optimizations can be made to the A^{*} algorithm to increase efficiency.
- One such optimization is to add a Heuristic to the cost of each state evaluated. A good heuristic will increase efficiency - up to 100\% in best cases.

Heuristic

Bad Heuristic

 Good HeuristicClosed Search Space

Summary

- The A^{*} algorithm will always return the most efficient path, if one exists.
- If there is no path, however, then the A^{*} algorithm becomes inefficient, as all state space will be explored.
- The A^{*} algorithm can be extended to support multiple goals and multiple start locations, and is generally very adaptable to many different problem domains, ranging from music to computer graphics.

