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ABSTRACT
We have developed a hybrid tracking algorithm for mo-
bile outdoor augmented reality (AR) applications. Our ap-
proach combines inertial sensors and camera video to im-
prove global bearing calculations. Prior research in this area
has focused on gravity aware feature descriptors, but we ex-
pand this to efficient full-frame vertical edge detection. We
discuss our implementation and evaluate it’s performance
on an iPhone 5, which reveals that our approach is over 100
times faster than existing feature alignment algorithms and
can improve tracking with only 2-4ms of additional process-
ing per frame on current generation mobile phones.

Categories and Subject Descriptors: H.5.1 [Multime-
dia Information Systems]: Augmented Reality; I.4.8 [Scene
Analysis]: Tracking

1. INTRODUCTION
Users have authentic augmented reality (AR) experiences
when visual cohesion between the real world and virtual
content is maintained precisely and correctly. Tracking and
registration errors, including drop outs, misalignment, failed
initialisation, and drift, have such an effect on the experi-
ence that they make AR systems unusable or unsuitable for
practical deployment. Thus there has been a large amount
of research with focus on tracking and registration in the last
two decades with ongoing work still required to improve ac-
curacy and efficiency of these systems.

Outdoor AR encompasses the problem of visualising ge-
ographically registered data sets with a mobile device that
includes a camera, a set of inertial sensors and some kind
of video output. The most challenging part of outdoor AR
is tracking the camera pose with respect to the geograph-
ical frame of reference. Modern mobile devices provide us
with a wide range of sensors, typically including gyroscopes,
accelerometers, magnetometers, global position (GPS) and
cameras. Yet, in practice, consumer level hardware has in-
sufficient accuracy for precise tracking.
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Ideally, applications should provide reliable and unre-
stricted end-user experiences, but this usually requires
feature-specific algorithms that give the best possible re-
sults for a specific interaction, and often fail or work poorly
in other situations. Tracking algorithms that primarily focus
on computing a global frame of reference (e.g. WGS84) are
not suitable for applications that require precise visual align-
ment. This is especially true for consumer level hardware,
because a computed global frame of reference does not pro-
vide sufficiently accurate coordinates for visual alignment.
High quality hybrid approaches are therefore critical to ap-
plications that want to provide end-user interactions that
depend on both accurate local and global registration.

We present details on the implementation of a hybrid ver-
tical edge tracking algorithm and explain how we used the
gravity vector and gyroscope to optimise visual processing.
We show how the algorithm can be implemented efficiently
and used to improve the accuracy of the global bearing.

2. BACKGROUND
It has been identified that tracking is one of the most impor-
tant aspects of AR applications[18]. When presented with
multiple options, users tend to avoid AR visualisations, and
visual jitter has been identified as one possible reason for
this[24]. Panorama tracking[23] improves visual cohesion
significantly, but requires a significant amount of memory
and per-frame processing which makes it unsuitable for high
resolution real time applications.

Using vision analysis to reduce errors in inertial sensor
measurements is a proven technique[15]. Sensor data is
relatively efficient to compute and use, but suffers from a
variety of issues[20]. Relative inertial sensors, such as the
gyroscope, may drift over time or provide incorrect measure-
ments. Absolute global sensors such as the magnetometer
and GPS may provide incorrect measurements due to local
interference and usually have a high latency on consumer
grade hardware. Image based methods are generally robust
in such circumstances, but suffer in cases of visual occlusion,
motion blur and computational expense. To resolve these is-
sues, it is possible to exploit the complementary nature of
these different inputs and combine them to produce a robust
output[29].

The gravity vector provides a locally consistent frame
of reference in which visual information can be processed.
Gravity aligned feature descriptors have been shown to im-
prove the reliability and performance of existing feature
matching algorithms, and can be used to extract and track



gravity-rectified planar surfaces[8, 9]. However, while the
gravity vector improves reliability of matching, it does not
reduce the geometric efficiency of the feature extraction pro-
cess.

Modern mobile platforms (including iOS and Android)
provide at least a basic level of integrated sensor fusion
which includes the gravity vector as an output. Track-
ing systems which depend on custom hardware or plat-
forms usually implement custom low level sensor fusion algo-
rithms[17]. By depending on the platform’s native low level
sensor fusion, we can improve performance; dedicated hard-
ware which offloads low-level sensor fusion is already avail-
able in consumer level hardware and we expect this trend to
continue.

3. FAST VERTICAL EDGE ALIGN-
MENT

We have developed a hybrid tracking algorithm, and a high
level overview is shown in Figure 1. The vertical edge align-
ment algorithm is composed of the steps in the green boxes.

Vertical Edge Alignment Hybrid Motion Model

Sensor Fusion
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Camera Data
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Figure 1. The structure of our proposed hybrid tracking algo-
rithm.

Our proposed vertical edge alignment algorithm is de-
signed to improve the accuracy of global alignment by com-
bining sensor fusion with image processing to produce a ro-
bust bearing measurement. Inter-frame alignment issues are
the most noticeable for users of outdoor AR applications[1]
and a purely sensor based approach may suffer from jitter,
latency and drift. Our implementation focuses on fixing
these issues and has been carefully designed to be both effi-
cient and scalable on current generation mobile hardware.

Our approach to visual alignment is conceptually differ-
ent from many existing computer vision techniques that es-
sentially depend on the image component as the ground
truth[7, 3]. By relying mostly on sensor data, we minimise
the amount of image processing required for visual align-
ment. Our approach is validated by our performance results;
a high level performance comparison (in Section 3.2.3) of our
proposed algorithm with the ORB[19]/Lucas-Kanade Opti-
cal Flow[12, 22, 21] implementation in OpenCV shows that
we are almost 100 times faster with sufficient accuracy.

3.0.1 Vertical Edges
Users of outdoor AR are typically pointing their devices to-
wards the horizon and in such video frames we expect a
large number of vertical edges, especially in urban environ-
ments where there are buildings and other artificial struc-
tures. By tracking vertical lines rather than specific fea-
ture points, we can reduce the computational costs involved
significantly. Vertical lines can be easily identified using a
memory-efficient scan line based search, unlike feature ex-
traction algorithms that must process large amounts of pixel
data to extract good edges for tracking purposes.

In addition, vertical edges, parallel to gravity, are the best
features to track when measuring translations and rotations
perpendicular to gravity. For our proposed algorithm, a
good vertical edge is one that has a large luminance gra-
dient perpendicular to gravity and ideally is part of a long
continuous edge parallel to gravity. This allows our algo-
rithm to identify the edge easily over several frames.

3.1 Implementation
The vertical edge alignment algorithm computes the precise
pixel offset between two video frames, such that vertical
edges overlap as precisely as possible. As input, it requires
two images, i1, i2, the gravity vector at the time each image
was captured g1, g2, and the estimated translation between
the two frames in pixels e, normally computed using the gy-
roscope. The output sub-pixel offset includes a confidence
value which is the number of vertical features aligned cor-
rectly.

The resulting alignment can be combined with existing
sensor fusion based estimates. In our implementation, we
used a weighted combination of the sensor fusion input with
the image alignment, but we mostly depend on the image
alignment (usually more than a 0.95 weighting). In the case
that the confidence of the match was low (e.g. less than
3-5 bins matched), we would defer completely to sensor fu-
sion. This worked sufficiently well in our testing, because
the image alignment process is typically more robust and
as accurate than the fusion of the gyroscope and magne-
tometer, but in difficult cases, e.g. extreme motion blur, we
would defer entirely back compass/gyroscope.

3.1.1 Gravity Vector
The gravity vector is sampled at a rate of 60Hz to 120Hz,
to ensure that the vector is accurate enough for frames cap-
tured at 30Hz. For each frame, the last value for the gravity
vector is used to compute the tilt angle, as this is the most
accurate and up to date reading.

We have found that the accuracy of the gravity vector
with respect to the image plane is excellent, typically on the
order of ±0.1◦. In addition, for many typical outdoor AR
applications, the user is unlikely to rotate the phone in a way
which significantly affects the gravity vector. This makes it
an ideal sensor for input to a computer vision algorithm.

The gravity vector can be computed by combining the
accelerometer, gyroscope and magnetometer[17]. However,
modern mobile platforms include the gravity vector as part
of the inertial sensor data. This vector is usually very accu-
rate and the sensor fusion computation may be accelerated
using hardware (e.g. the iPhone M7 motion co-processor),
so we use this vector directly rather than calculating it our-
selves.



3.1.2 Tilt Calculation
The tilt is the rotation of the image frame such that gravity
is aligned with the Y axis (see Figure 2). The tilt is only
valid for gravity vectors that are not parallel to the camera
axis (e.g. not looking directly up or down), and it’s com-
putation is dependant on the various coordinate systems of
the device’s hardware configuration.
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Figure 2. Vertical edges are extracted and binned relative to
gravity.

We define a gravity local coordinate system such that
gravity points down −Z and +X points right. This cylin-
drical mapping is the same as is used in other panoramic
tracking algorithms[4] and is useful for most typical outdoor
AR applications1.

3.1.3 Scan Line Extraction
Using the tilt angle, we can compute a set of scan lines
perpendicular to the gravity vector (the blue lines in figure
2). We compute a rotated bounding box for the image frame
and use this to clip a set of horizontal scan lines. We rotate
these scan lines back into image space to extract features.
The distance between scan lines can be specified and this
influences the number of feature points extracted and the
amount of pixel data processed.

We use Bresenham’s line drawing algorithm[2] to trace
these scan lines efficiently (see Figure 3) and apply the
Laplacian of Gaussian operator sequentially to pixels. The
Laplacian operator approximates the 2nd derivative and we
extract the coordinates of the zero crossings with approxi-
mate sub-pixel precision using a fast mid-point calculation.

The Laplacian operator allows us to calculate the mid-
points precisely even when edges are not perfectly visible.
This allows for accurate key-point detection even when the
image includes a large amount of motion blur and/or unfo-
cused regions, which is common for cameras with relatively
small sensors and contrast based focusing.
1Another option we have considered involves using globally regis-
tered scan lines radiating around the user, such that in our gravity
local coordinate Z = 0 would be the horizon. This may increase
the quality of tracking during vertical motion.

Figure 3. Scan lines overlaid on an image rotated by 10◦.

3.1.4 Approximate Zero Crossings

Our original algorithm used only adjacent pixels to detect
edges - if the difference between the two pixels was above
a certain threshold, we would use it for tracking. Despite
being very fast, we found this approach failed to generate
many feature points in frames with motion blur.

To alleviate this problem, we implemented an efficient
Laplacian of Gaussian (LoG) kernel to detect approximate
2nd derivative zero crossings. We experimented with a num-
ber of kernel sizes and variations, but eventually found that
LoG5 gave good results both in terms of accuracy and per-
formance:

LoG5(I, x) =


−1
−1
4
−1
−1

 ·


I(x− 2)
I(x− 1)
I(x)

I(x+ 1)
I(x+ 2)


where I is an intensity function, e.g. a sequence of pixels,
and x is the offset at which we are sampling.

In addition, we improved our feature point extraction to
be approximately sub-pixel accurate by calculating the ap-
proximate zero crossing. Traditional curve fitting algorithms
for finding the precise zero crossing are inefficient[6]. We
propose a simple mid-point calculation which computes the
sub-pixel zero-crossing with at most and error of 0.5 pixels,
and does not require additional sampling or image process-
ing. Due to the speed of our approach, simply increasing
the resolution of the input video frames increases the accu-
racy of the gradient calculations; in effect, the smaller pixel
width reduces the error in our approximation significantly,
and is possible because to do so because our approximation
can be implemented efficiently.

Given an intensity function for a scan line, I(x), we eval-
uate the Laplacian of the Gaussian (LoG) kernel at x and
x+1. This gives us a value for the approximate 2nd deriva-
tive curve at x and x+1. If I ′′(x) is positive and I ′′(x+1) is
negative (or the opposite), there is a zero-crossing point be-
tween those two samples2. We can compute the approximate

2We don’t consider the case that I′′(x + 1) = 0 because in that
situation the mid point can be computed precisely.



value for x such that I ′′(x) = 0 using a function midpoint:

zerocrossing(x1, x2) = x1 + (x2 − x1)× midpoint(x1, x2)

One way to approximate the zero crossing is to take the
average value of x1, x2:

midpoint(a, b) = 0.5 (1)

However, if the discrete sampling of I ′′ is not equally bal-
anced around the zero-crossing, which we expect is the most
common case, this formulation will produce incorrect re-
sults. By modelling the curve as a straight line between the
sampled points 〈x, I ′′(x)〉 → 〈x+ 1, I ′′(x+ 1)〉, we can com-
pute a more accurate approximation. The following compu-
tation calculates the point where this line crosses zero as a
relative factor in the range (0.0 → 1.0):

midpoint(a, b) =
−a

b− a
(2)

We used the 2013B data set[26], to evaluate the average
midpoint function in equation 1 and the approximate mid-
point function in equation 2. We ran the tests once for each
algorithm.

Table 1. Midpoint Calculation Accuracy
Error (◦N)

Average Approximate
Data Set S.D. S.E. S.D. S.E.

2013B0 0.716274 0.102325 0.647186 0.0924552
2013B1 1.63702 0.187779 1.35561 0.155499
2013B2 1.31868 0.203477 1.17316 0.181022

The results in Table 1 show a consistent improvement of
between 10− 20%.

3.1.5 Feature Thresholding

Once a zero crossing has been detected, we calculate the
local variance and compare it to a threshold. Because the
LoG function is sensitive to noise, a considerable effort is
required to filter good features. We assume that the zero
crossing represents a pixel, typically on one side of a gra-
dient, and so we look at the variance between the left side,
the centre, and the right side.

left(I, x) =

[
I(x− 2) + I(x− 1)

2
− I(x)

]2

right(I, x) =

[
I(x+ 2) + I(x+ 1)

2
− I(x)

]2

variance(I, x) = left(I, x) + right(I, x)

This function tries to analyse the local structure of the
gradient. It takes a small 2 pixel sample on the left of the
zero crossing, and a small 2 pixel sample on the right of the
zero crossing. It then compares these samples to the value at
the zero crossing and looks at the difference. For a smooth
gradient, we’d expect a similar value for both left and right,
but for a step gradient, one side will be big and the other
side will be small. This function should compute the same
value for the same step size whether or not it is blurred or
sharp - in practice it appears to do a good job as seen in
Figure 4.

Figure 4. Features are still detected with good accuracy despite
significant motion blur.

We tried a number of different variance functions, and
found that the sum of squared difference gave the best ac-
curacy and good performance. It requires no additional sam-
pling of the input image as we use the greyscale values com-
puted for the Laplacian. The amount of noise is tolerable in
practice.

3.1.6 Feature Alignment
Our initial feature table implementation tried to extract and
match vertical lines efficiently. The green edges in Figure 5
show the structure that could be extracted from the feature
points. However, after analysing a number of data sets, we
decided against this approach. Extracting complete edges
robustly across different lighting conditions and motion blur
is difficult. Missing feature points could break connected
edges incorrectly, and matching up edges in these conditions
would require a complex heuristic.

Rather than trying to discretely track connected vertical
edges, we implemented a statistical model for alignment.
The proposed algorithm considers all identified vertical fea-
tures, and effectively computes a histogram (an example is
given in Figure 5) of this data perpendicular to the gravity
vector. By aligning the histograms, we compute the global
alignment.

3.1.7 Feature Table Binning
After extracting the vertical edges, we distribute them into
a series of bins (referred to as a feature table), where each
bin covers a fixed portion of the X axis in the gravity local
coordinate system, as shown in Figure 2. Sequential items
in a single bin often represent connected vertical lines in the
source image.

The size of the bins is flexible; by increasing the bin width,
we reduce the total number of bins. This can improve effi-
ciency at the cost of precision. However, if the bin width is
too small, visual noise could become problem. In practice,
we’ve identified that a width of 1px or 2px is ideal.

In order to reduce aliasing issues, we ensure that all fea-
ture tables have an even number of bins. Different tilt rota-
tions may require a different number of bins, depending on
the width of the rotated bounding box. Feature tables with
an even number of bins will always align such that the centre
of rotation falls precisely between two bins, so our proposed
algorithm ensures this quality for all feature tables.



Figure 5. A histogram of vertical edges in 2px wide bins. The
three main peaks from left to right correspond to the house, the
road sign, and the tree. Approximate vertical lines overlaid in
green on the source image. Individual red pixels mark precise
feature points.

3.1.8 Table Alignment
We can align two feature tables with bin-level accuracy us-
ing the Fast Integral Sequence Alignment algorithm, as dis-
cussed in Section 4. We use the number of vertical edges
in each bin to compute an integral sequence u and v for
each feature table. To compute the estimate bin offset, we
compute the relative rotation between two frames using the
gyroscope and convert this into a bin offset estimate e.

Once we have calculated the bin alignment, FISA(u, v, e),
we compute the precise sub-pixel alignment of individual
vertical features. For corresponding bins in each feature
table, we compute average X position in gravity local coor-
dinates. The difference between the average vertical feature
position is computed for all corresponding bins, and used to
compute an average displacement in pixels. This displace-
ment is then converted back into a rotation and used as
input into the sensor fusion computation.

An alternative approach is to compare the bins in the
feature table sequentially. As the feature points are ordered
vertically along the Y axis (i.e. gravity), we can compute
a precise correspondence between features with similar Y
value efficiently. We hoped that this approach would be
more tolerant to noise, but instead found that in practice it
was not a systematic improvement.

When computing the relationship between two bins, ide-

ally we would like the bins to have a similar and significant
number of feature points. This helps to reduce noise. Our
proposed algorithm therefore only aligns individual bins that
have a fixed minimum number of vertical features.

In practice, this isolates noise from sequential vertical
lines, but in difficult tracking situations (e.g. significant mo-
tion blur), it might be the best match available, so fine tun-
ing is required. Our confidence of a good match is therefore
directly related to the number of bins we could use to com-
pute the alignment. If we have less than a moderate number
of corresponding bins, our hybrid tracking algorithm reverts
back to a purely sensor based approach.

3.2 Evaluation
We evaluate our algorithm on an iPhone 5 running iOS 7,
using the stop sign image from the metaio data set[10], as
shown in Figure 3. We tested a number of different scenarios
to examine the performance of the proposed algorithm and
its tolerance to erroneous input.

We also took this opportunity to compare our approach
with an existing feature extraction and alignment algorithm
to assess the viability of our implementation.

3.2.1 Rotational Alignment
We modified the sample image so that it could be system-
atically rotated, and generated rotations in 1◦ increments
from −20◦ to +20◦ using a script. We used the 0◦ rotation
as the basis and calculated the offset of every other rota-
tion using our proposed algorithm. As the source images
only have rotations applied, the translation is expected to
be 0 in all cases. As such, the translation estimate supplied
to the vertical feature alignment algorithm was set to 0 for
these tests.

We varied the distance between scan lines, which directly
affects the number of feature points detected, to look at
the effect on performance and accuracy. The scan lines are
distributed vertically every dy pixels. We give the time for
feature extraction and alignment processing separately, and
the alignment error for all images from −20◦ to +20◦.

Table 2. Rotation Performance and Accuracy.
Output Error (px)

dy Features Alignment Mean S.D. S.E.
5px 12.13ms 303.9µs -0.0026 0.019 0.003
10px 6.29ms 143.3µs -0.0045 0.028 0.0044
15px 4.24ms 109.9µs -0.0082 0.04 0.0062
20px 3.27ms 119.5µs -0.023 0.046 0.0071
25px 2.57ms 125.8µs -0.0099 0.066 0.01
30px 2.08ms 126.5µs 0.16 0.64 0.099

The results in Table 2 show that there is a good balance
between performance and accuracy when 10 <= dy <= 20.
The number of samples that matched up is dependant on the
source image, but we want to ensure a reasonable number
of good quality matches. As dy is increased, the accuracy is
diminished, as expected.

3.2.2 Rotation Noise
Under normal circumstances it would be typical to have a
small amount of error in the measured rotation from the



gyroscope. We simulate this by adding gaussian noise to
the tilt estimate and passing this incorrect data into the
alignment algorithm. We fix dy = 10 and the bin size is 2px
for this evaluation, and use the same data set as described
in Section 3.2.1.

Table 3. Rotation with noise.
Input Error Output Error (px)

S.D. Samples Mean S.D. S.E.
0.0° 49.2 -0.0049 0.045 0.00071
0.2° 48.3 0.0025 0.044 0.00069
0.4° 46.6 0.013 0.12 0.0019
0.6° 44.8 0.012 0.29 0.0045
0.8° 43.4 -0.032 0.47 0.0073
1.0° 42.3 -0.077 0.58 0.0091

From the results in Table 3, we can see that despite sig-
nificant error in the tilt, the standard deviation is about half
a pixel of error. This is fairly reasonable, as the alignment
of the feature tables will become progressively worse, pro-
portional to the amount of error in the tilt angle. We also
note that the number of matching samples was reduced too,
indicating a reduced confidence of a good match, which is
also expected.

3.2.3 Translation Comparison
We compared our proposed algorithm with an alignment al-
gorithm implemented using optical flow. We were primarily
interested in the efficiency of our approach in comparison
to existing feature point extraction and correspondence al-
gorithms. We generated a set of test images with fixed X
offsets from -20px to +20px in 10px increments, and pro-
cessed them using both implementations.

Table 4. Image Alignment Performance Comparison on iPhone
5.

ORB/LK Optical Flow Proposed Implementation
X Features Alignment Features Alignment

-20px 112ms 309ms 3.84ms 55.0µs
-10px 107ms 318ms 3.62ms 54.2µs
0px 112ms 310ms 3.60ms 55.1µs
10px 107ms 314ms 3.77ms 54.6µs
20px 108ms 322ms 3.60ms 53.9µs

Error: ±0.00005px Error: ±0.05px

The results in Table 4 show that our proposed algorithm is
significantly faster in practice than existing feature extrac-
tion and optical flow alignment algorithms. In particular,
ORB is considered to be a reasonably fast feature extrac-
tion algorithm, and yet it performed relatively poorly in
comparison. Lukas-Kanade optical flow is generally consid-
ered a robust and efficient method for calculating the rel-
ative motion of feature points. Our results confirmed that
it produces highly accurate alignment, but at a significant
cost. In addition, while this implementation of optical flow
has a fixed window size of 21px, our algorithm has no such
limitation, provided the estimate is reasonable.

3.2.4 Translation Noise
We also look at how a poor estimate affects the quality of the
computed alignment. This is particularly important as some

of the biggest alignment issues are caused by errors in the
gyroscope. The estimate is used directly as an input into the
FISA algorithm and thus it is critical that we find the correct
offset even if the input estimate contains significant error.
We fix dy = 10 and the bin size is 2px for this evaluation,
and use the same data set as described in Section 3.2.3.

Table 5. Translation with noise.
Input Error Output Error (px)

S.D. Samples Mean S.D. S.E.
0px 58.1 0.32 0.36 0.012
5px 58.1 0.32 0.36 0.012
10px 58.1 0.32 0.36 0.012
15px 58.1 0.32 0.36 0.012
20px 58.1 0.32 0.36 0.012

From the results in Table 5, we can see that despite signifi-
cant error in the estimated translation, the alignment is still
computed accurately. The results are identical each time
which indicates that all features were matched in the same
way.

4. FAST INTEGRAL SEQUENCE
ALIGNMENT

Finding the correspondence between two sequences of num-
bers can help us align images. We looked at statistical
methods for computing the correlations between two se-
quences[14], and in particular, how this has been applied
to computer vision problems in the past[11]. As a result,
we developed a correlation function with a formulation that
allows for efficient implementation, and we show how it per-
forms directly on the iPhone 5.

The Fast Integral Sequence Alignment is essentially a
peak matching algorithm. It works by looking at “peaks”
in the given sequences and measuring how they match up.
When the sequences are matching up sufficiently well with
a given offset, such that the error between individual corre-
sponding peaks is low, we say that the sequences are aligned.
As an example, here, u and v are aligned with an offset of
3:

u = [3, 7, 8,7, 6, 0, 0, 7, 5, 3]

v = [7, 7, 0, 0, 7, 5, 4, 0, 1, 5]

The definition is similar in principle to convolution, and
practically speaking, the result is similar to FFT based im-
age alignment[16]. However, FFT based approaches are
generally not fast for small data sets, such as the ones we
are dealing with, despite having a better computational effi-
ciency[5].

4.1 Definition
Given two sequences of positive integers, u and v, of length
n, the following sum of squared errors correlation:

(u ∗ v)(k) =
∞∑

i=−∞

[u(i)− v(i− k)]2

should yield minima when the two arrays u and v are
aligned. In cases where u(i) or v(i − k) are undefined, the
difference is 0. For a general pair of sequences, there is the



potential that there are multiple values of k that produce
good alignments, especially in the case that the arrays con-
tain noise.

Error calculations are inherently based on the size of the
overlap between u and v. Therefore ideally, −n/2 < k < n/2.
Our confidence of a good match when k is outside these
bounds is reduced, as the the minima will naturally be lower
as less items overlap3.

We adapt this function to include an initial estimation
parameter e:

(u ∗ v)(k, e) = (k − e)E +

∞∑
i=−∞

[u(i)− v(i− k)]2

where e is assumed to be close to the actual value of k.
The exponent E in the bias should be adjusted so that it
approximates a gaussian distribution on the same magnitude
as the actual error. This can be pre-selected or computed
dynamically; in our implementation we use 2 for efficiency.

This estimation bias serves two important purposes, it re-
duces the ambiguity in the case that there are multiple val-
ues of k that give a good alignment, and it provides several
opportunities to improve the performance of the implemen-
tation. In practice, the estimation bias is how we leverage
the sensor data - the more accurate the initial estimate, the
more efficient and accurate the result.

4.1.1 Reducing Ambiguity
In the case that there are multiple minima, we need some
way to distinguish between them. The initial estimate bias
solves this by increasing the error for solutions further away
from e. For example in the following,

u = [0, 5, 0, 4, 0, 5, 0, 4, 0, 5]

v = [4, 0, 5, 0, 4, 0, 5, 0, 5, 0]

an offset of k = −3 and k = +1 give the same minima 0. If
we estimate that the alignment e = 2, we reduce this to a
single minima at k = 1.

In the very rare case that we still have ambiguity, we can
often pick the minima closest to e. However, in practical
data sets, this event has never been observed.

4.1.2 Improving Performance
We can avoid evaluating (u ∗ v)(k, e) for values of k that
are likely to give high error. We use an exponential initial
error based on the distance of k− e and if we incrementally
evaluate (u ∗ v)(k, e), we can ignore values of k that are
unlikely to yield good results.

The naive implementation has a best case O(kn) because
for all valid k, we must evaluate n multiplications and se-
lect the minimum. Leveraging the estimation, we can avoid
computing k that are bigger than the currently found mini-
mum.

We can improve the linear implementation by incremen-
tally evaluating for k expanding outwards from e, avoiding
computations for k that are bigger than the currently found
minimum.
3The mean squared error is another statistical formulation which
effectively normalises the error by the size of the overlap, but
makes our approach hard to optimise and doesn’t make a signifi-
cant different in real usage.

Alternatively, we could use a min-heap and incrementally
evaluate the summation over i to track the current minima
for a given offset k. In particular, it is common to find a good
value for k within a few iterations. By specially crafting the
heap siftdown function[13] we can leverage this condition
to minimise the amount of cache thrashing.

Finally, in order to maximise the benefit of the heap, we
should avoid evaluating i sequentially. Doing so will often
compute many uninteresting cases where [u(i) − v(i − k)]2

is relatively small and cause the heap to reorganise itself re-
peatedly. In contrast, the biggest peaks will often lead to
the biggest errors when data is misaligned. By evaluating
these first, we push unlikely k to the bottom of the heap,
and we reduce the chance that we continue to evaluate in-
correct alignments. We compute the peaks of u such that
u[peaks[i]] >= u[peaks[i+ 1]] and use this to incrementally
evaluate [u(peaks[i])− v(peaks[i]− k)]2.

4.2 Implementation
We define the function FISA, Fast Integral Sequence Align-
ment, for arrays u and v of length n as follows:

FISA(u, v, e) =
n/2

min
k=−n/2

(u ∗ v)(k, e)

This function, in practice, returns a (k, error) pair such
that error is minimised. The range of k can be adjusted
depending on the data sets we are dealing with. We imple-
ment this function in C++11 with two main variations, a
linear search method that computes for all k but is bounded
by the worst error found thus far, and a heap method that
incrementally updates based on the lowest error.

4.3 Evaluation
We evaluated the above algorithm on an iPhone 5 running
iOS 7, compiled with clang++-3.3 -O3. We vary the size
of n using randomly generated sequences with values be-
tween 0 and 50. We add several large values in the data
set between 0 and 250 and include up to 10% noise in all
values. We compare 4 variations of the algorithm, including
a linear search from left to right, the linear search expand-
ing outwards from the initial estimate, the heap search with
incremental evaluation and the heap search with peak-order
evaluation. See Table 6 for the results.

Table 6. FISA Performance Results.
Linear (µs) Heap (µs)

n Left-Right Outward Left-Right Peaks
8 0.552 0.484 3.628 6.629
16 1.716 1.357 10.721 10.489
32 4.914 2.878 22.536 20.126
64 16.560 9.496 46.687 34.780
128 56.323 32.793 94.913 60.527
256 176.742 112.915 201.484 103.439
512 733.457 430.844 492.797 205.429
1024 2987.51 1713.51 1253.59 365.713

For small problems n < 256, the outward expanding linear
scan is the most efficient choice. This is likely due to the
fact that it uses the L1 cache more effectively than the heap
implementation which copies a significant amount of data
during siftup and siftdown operations.



The cost of the initial sort in the heap+peaks implemen-
tation is moderate but pays off significantly for n >= 512.
For n = 1024, it is almost 35 times faster.

These results suggest that for a general algorithm, a hy-
brid between the two algorithms would be appropriate, how-
ever in our case we are mostly concerned with n < 256 so
we have chosen to use the linear+outward search.

5. SOURCE CODE
The source code for this research has been published as
part of the Transform Flow Visualisation and Evaluation
Toolkit[27, 28], and is compatible with the Transform Flow
Browser for iOS[25].

6. CONCLUSION
We have presented an efficient method to reduce jitter and
improve the AR experience on mobile consumer level hard-
ware. Our method combines sensor data and video frames
to ensure reliable tracking, and is tolerant to both inertial
and visual tracking failures. The proposed scan line based
approach can be tuned for real time performance on a va-
riety of different input resolutions and hardware levels, and
the fast integral sequence alignment algorithm can correct
errors in the inertial sensor measurements efficiently.
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